SEARCH

SEARCH BY CITATION

References

  • Best, M. J., et al. (2011), The Joint UK Land Environment Simulator (JULES), Model description—Part 1: Energy and water fluxes, Geosci. Model Dev. Discuss., 4, 595640, doi:10.5194/gmdd-4-595-2011.
  • Clark, D. B., et al. (2011), The Joint UK Land Environment Simulator (JULES), Model description—Part 2: Carbon fluxes and vegetation, Geosci. Model Dev. Discuss., 4, 641688, doi:10.5194/gmdd-4-641-2011.
  • Fletcher, R., and M. J. D. Powell (1963), A rapidly convergent descent method for minimization, Comput. J., 6, 163168.
  • Fox, A., et al. (2009), The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data, Agric. For. Meteorol., 149, 15971615.
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2003), Bayesian Data Analysis, Chapman and Hall/CRC Press, Boca Raton, Fla.
  • Giering, R., and T. Kaminski (1998), Recipes for adjoint code construction, ACM Trans. Math. Software, 24, 437474.
  • GLOBALVIEW-CO2 (2008), Cooperative Atmospheric Data Integration Project—Carbon Dioxide[CD-ROM],NOAA, Boulder, Colo.
  • Heimann, M. (1995), The global atmospheric tracer model TM2, Tech. Rep. 10, Dtsch. Klimarechenzentrum, Hamburg, Germany.
  • Kaminski, T., R. Giering, M. Scholze, P. Rayner, and W. Knorr (2003), An example of an automatic differentiation-based modelling system, in Computational Science and its Applications, Lecture Notes Comput. Sci., vol. 2668, edited by V. Kumar et al., pp. 95104, Springer, New York.
  • Kaminski, T., W. Knorr, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu (2010), Assimilation of MERIS FAPAR into a terrestrial vegetation model and mission design, paper presented at Living Planet Symposium, Eur. Space Agency, Bergen, Norway.
  • Knorr, W. (2000), Annual and interannual CO2exchanges of the terrestrial biosphere: Process-based simulations and uncertainties, Global Ecol. Biogeogr., 9, 225252.
  • Knorr, W., and M. Heimann (2001), Uncertainties in global terrestrial biosphere modeling: 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme, Global Biogeochem. Cycles, 15, 207225, doi:10.1029/1998GB001059.
  • Knorr, W., and J. P. Schulz (2001), Using satellite data assimilation to infer global soil moisture status and vegetation feedback to climate, in Remote Sensing and Climate Modeling: Synergies and Limitations, Adv. Global Change Res., vol. 7, edited by M. Beniston and M. Verstraete, pp. 273306, Springer, New York.
  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953), Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 10871092.
  • Mosegaard, K., and A. Tarantola (1995), Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 12,43112,447.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1996), Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Cambridge Univ. Press, New York.
  • Rayner, P. J., M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann (2005), Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cycles, 19, GB2026, doi:10.1029/2004GB002254.
  • Sambridge, M., and K. Mosegaard (2002), Monte Carlo methods in geophysical inverse problems, Rev. Geophys., 40(3), 1009, doi:10.1029/2000RG000089.
  • Scholze, M. (2003), Model studies on the response of the terrestrial carbon cycle on climate change and variability, PhD thesis, Max Planck Inst. für Meteorol., Hamburg, Germany.
  • Scholze, M., T. Kaminski, P. Rayner, W. Knorr, and R. Giering (2007), Propagating uncertainty through prognostic carbon cycle data assimilation system simulations, J. Geophys. Res., 112, D17305, doi:10.1029/2007JD008642.
  • Talagrand, O., and P. Courtier (1987), Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory, Q. J. R. Meteorol. Soc., 113, 13111328.
  • Tarantola, A. (1987), Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, New York.
  • Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, Soc. for Ind. Appl. and Math., Philadelphia, Pa.
  • Trudinger, C. M., et al. (2007), OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models, J. Geophys. Res., 112, G02027, doi:10.1029/2006JG000367.
  • vonStorch, H., and F. W. Zwiers (1999), Statistical Analysis in Climate Research, Cambridge Univ. Press, Cambridge, UK.
  • Williams, M., P. A. Schwarz, B. E. Law, J. Irvine, and M. R. Kurpius (2005), An improved analysis of forest carbon dynamics using data assimilation, Global Change Biol., 11, 89105, doi:10.1111/j.1365-2486.2004.00891.x.
  • Ziehn, T., W. Knorr, and M. Scholze (2011a), Investigating spatial differentiation of model parameters in a carbon cycle data assimilation system, Global Biogeochem. Cycles, 25, GB2021, doi:10.1029/2010GB003886.
  • Ziehn, T., J. Kattge, W. Knorr, and M. Scholze (2011b), Improving the predictability of global CO2 assimilation rates under climate change, Geophys. Res. Lett., 38, L10404, doi:10.1029/2011GL047182.