SEARCH

SEARCH BY CITATION

References

  • Alam, J. M., N. Kevlahan, and O. V. Vasilyev (2006), Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations, J. Comput. Phys., 214, 829857.
  • Aleksandrov, V., and H. Samuel (2011), The schur complement method solution of large-scale problems in geophysics, to be sumitted to J. Comput. Phys.
  • Amestoy, P. R., I. S. Duff, and J.-Y. L'Excellent (1998), Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Eng., 184, 501520.
  • Baffico, L., S. Bernard, Y. Maday, G. Turinici, and G. Zérah (2002), Parallel in time molecular dynamics simulations, Phys. Rev. E, 66, 057701.
  • Brandt, A. (1982), Guide to multigrid development, Lect. Notes Math., 960, 220312.
  • Braun, J., C. Thieulot, P. Fullsack, M. Dekool, C. Beaumont, and R. Huismans (2008), DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems, Phys. Earth Planet. Inter., 171, 7691.
  • Bunge, H.-P., and J. Baumgardner (1995), Mantle convection modeling on parallel virtual machines, Comput. Phys., 9, 207215.
  • Choblet, G., O. Čadek, F. Couturier, and C. Dumoulin (2007), Oediupus: A new tool to study the dynamics of planetary interiors, Geophys. J. Int., 170, 930.
  • Christensen, U. R., P. Olson, and G. A. Glatzmaier (1999), Numerical modeling of the geodynamo: A systematic parameter study, 138, 393409.
  • Evonuk, M., and G. Glatzmaier (2004), 2D studies of various approximations used for modeling convection in giant planets, Geophys. Astrophys. Fluid Dyn., 98, 241255.
  • Farhat, C., and M. Chandesris (2003), Time-decomposed parallel time-integrators: Theory and feasibility studies for fluid, structure and fluid-structure applications, 58, 13971434.
  • Fisher, P., F. Hecht, and Y. Maday (2003), A parareal in time semi-implicit approximation of the navier-stokes equations, paper presented at the 15th International Conference on Domain Decomposition Methods, Frei Univ. Berlin, Berlin.
  • Hoïnk, T., J. Schmalzl, and U. Hansen (2006), Dynamics of metal-silicate separation in a terrestrial magma ocean, Geochem. Geophys. Geosyst., 7, Q09008, doi:10.1029/2006GC001268.
  • Hütigg, C., and K. Stemmer (2008), The spiral grid: A new approach to discretize the sphere and its application to mantle convection, Geochem. Geophys. Geosyst., 9, Q02018, doi:10.1029/2007GC001581.
  • Jiang, G. S., and C. W. Shu (1996), Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202228.
  • Kageyama, A., and T. Sato (2004), “Yin-Yang grid”: An overset grid in spherical geometry, Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734.
  • Katz, R. F., M. Knepley, B. Smith, M. Spiegelman, and E. Coon (2007), Numerical simulation of geodynamic processes with the portable extensible toolkit for scientific computation, Phys. Earth Planet. Inter., 163, 5268.
  • Lepsa, B., and A. Sandu (2010), An effcient error control mechanism for the adaptive parareal time discretization algorithm, paper presented at Spring Simulation Multiconference, Soc. for Model. and Simul. Int., New York.
  • Lions, J.-L., Y. Maday, and G. Turicini (2001), Résolution d'EDP par un schéma en temps “pararéel,”, C. R. Acad. Sci., 332, 661668.
  • Liu, Y., and J. Hu (2008), Modified propagators of parareal in time algorithm and application to Princeton Ocean model, Int. J. Numer. Methods Fluids, 57, 17931804.
  • Mercerat, E. D., L. Guillot, and J.-P. Villotte (2009), Application of the parareal algorithm for acoustic wave propagation, paper presented at 7th International Conference of Numerical Analysis and Applied Mathematics, Eur. Soc. of Comput. Methods in Sci. and Eng., Rethymno, Greece.
  • Roe, P. L. (1986), Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18, 337365.
  • Samaddar, D., D. E. Newman, and R. Sànchez (2010), Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm, J. Comput. Phys., 229, 65586573.
  • Samuel, H. (2009), STREAMV: A fast, robust and modular numerical code for modeling various 2D geodynamic scenarios, annual report, Bayerisches Geoinst., Bayreuth, Germany.
  • Samuel, H. (2012), A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans, Earth Planet. Sci. Lett., 313–314, 105114 doi:10.1016/j.epsl.2011.11.001.
  • Samuel, H., and M. Evonuk (2010), Modeling advection in geophysical flows with particle level sets, Geochem. Geophys. Geosyst., 11, Q08020, doi:10.1029/2010GC003081.
  • Schmalzl, J., and U. Hansen (2000), A fully implicit model for simulating dynamo action in a Cartesian domain, Phys. Earth Planet. Inter., 120, 339349.
  • Schmidt, J., C. Piret, N. Zhang, B. J. Kadlec, D. A. Yuen, Y. Liu, G. B. Wright, and E. O. D. Sevre (2010), Modeling of tsunami waves and atmospheric swirling flows with graphics processing unit (GPU) and radial basis functions (RBF), Concurrency Comput. Practice Exper., 22, 18131835.
  • Suckale, J., J.-C. Nave, and B. H. Hager (2010), It takes three to tango: 1. Simulating buoyancy-driven flow in the presence of large viscosity contrasts, J. Geophys. Res., 115, B07409, doi:10.1029/2009JB006916.
  • Sweby, P. K. (1984), High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 9951011.
  • Tackley, P. J. (2008), Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter., 171, 718.
  • Thieulot, C. (2011), FANTOM: Two- and three-dimensional numerical modelling of creeping flows for the solution of geological problems, Phys. Earth Planet. Inter., 188, 4768.
  • Tosi, N., D. A. Yuen, and O. Čadek (2010), Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth-dependent thermodynamic and transport properties, Phys. Earth Planet. Inter., 298, 229243.
  • Trindade, J. M., and J. C. Pereira (2004), Parallel-in-time simulation of the unsteady Navier-Stokes equations for incompressible flow, Int. J. Numer. Methods Fluids, 45, 11231136.
  • Trindade, J. M., and J. C. Pereira (2006), Parallel-in-time simulation of two-dimensional, unsteady, incompressible laminar flows, Int. J. Numer. Methods Fluids, 50, 2540.
  • Verhoeven, J., and J. Schmalzl (2009), A numerical method for investigating crystal settling in convecting magma chambers, Geochem. Geophys. Geosyst., 10, Q12007, doi:10.1029/2009GC002509.
  • Wessel, P., and W. H. F. Smith (1995), New version of the generic mapping tools, Eos Trans. AGU, 76, 33, doi:10.1029/95EO00198.
  • Zhong, S., M. T. Zuber, L. N. Moresi, and M. Gurnis (2000), The role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 105, 11,063–11,082.
  • Zhong, S., A. McNamara, E. Tan, L. Moresi, and M. Gurnis (2008), A benchmark study on mantle convection in a 3-D spherical shell using CitcomS, Geochem. Geophys. Geosyst., 9, Q10017, doi:10.1029/2008GC002048.