Ionospheric effects of whistler waves from rocket-triggered lightning



[1] Lightning-induced electron precipitation (LEP) is one of the primary mechanisms for energetic electron loss from Earth's radiation belts. While previous works have emphasized lightning location and the return stroke peak current in quantifying lightning's role in radiation belt electron loss, the spectrum of the lightning return stroke has received far less attention. Rocket-triggered lightning experiments performed at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, provide a means to directly measure the spectral content of individual lightning return strokes. Using an integrated set of numerical models and directly observed rocket-triggered lightning channel-base currents we calculate the latitudinal dependence of the precipitation signature. Model results indicate that rocket-triggered lightning may produce detectable LEP events and that return strokes with higher ELF (3 Hz–3 kHz) content cause proportionally more ionospheric ionization and precipitate more electrons at higher latitudes than return strokes with proportionally higher VLF (3 kHz–30 kHz) content. The predicted spatio-temporal signature of the induced electron precipitation is highly dependent upon the return stroke spectral content. As a result, we postulate that rocket-triggered lightning experiments enable us to the estimate the spectral profile of energetic electrons precipitated from the Earth's radiation belts.