SEARCH

SEARCH BY CITATION

References

  • Archer, C. L., and M. Z. Jacobson (2007), Supplying baseload power and reducing transmission requirements by interconnecting wind farms, J. Appl. Meteorol. Climatol., 46(11), 17011717.
  • Bornstein, R. D., and W. T. Thompson (1981), Effects of frictionally retarded sea breeze and synoptic frontal passages on sulfur dioxide concentrations in New York City, J. Appl. Meteorol., 20(8), 843858.
  • Bowers, L. (2004), The effect of sea surface temperature on sea breeze dynamics along the coast of New Jersey, MS thesis, Rutgers Univ., New Brunswick, N. J.
  • Bresesti, P., W. L. Kling, R. L. Hendriks, and R. Vailati (2007), HVDC connection of offshore wind farms to the transmission system, IEEE Trans Energy Convers., 22(1), 3743.
  • British Oceanographic Data Centre (2009), General Bathymetric Chart of the Oceans (GEBCO) Gridded Bathymetry Data, http://www.gebco.net/data_and_products/gridded_bathymetry_data/, Liverpool, U. K.
  • Colby, F. P. (2004), Simulation of the New England sea breeze: The effect of grid spacing, Weather Forecast., 19, 277285.
  • Colle, B. A., and D. R. Novak (2010), The New York Bight jet: Climatology and dynamical evolution, Mon. Weather Rev., 138(6), 23852404.
  • deAlegría, I., J. L. Martín, I. Kortabarria, J. Andreu, and P. I. Ereño (2009), Transmission alternatives for offshore electrical power, Renewable Sustainable Energy Rev., 13, 10271038, doi:10.1016/j.rser.2008.03.009.
  • Dhanju, A., P. Whitaker, and W. Kempton (2008), Assessing offshore wind resources: An accessible methodology, Renwable Energy, 33, 5564.
  • Dvorak, M. J., C. L. Archer, and M. Z. Jacobson (2010), California offshore wind energy potential, Renewable Energy, 35, 12441254.
  • Energy Information Administration (2010), Electric power annual data tables, report, Washington, D. C.
  • Environmental Protection Agency (2010), State and local emissions—State energy CO2 emissions, report, Washington, D. C.
  • Holttinen, H., M. Milligan, B. Kirby, T. Acker, V. Neimane, and T. Molinski (2008), Using standard deviation as a measure of increased operational reserve requirement for wind power, Wind Eng., 32, 355377.
  • Kempton, W., F. Pimenta, D. E. Veron, and B. A. Colle (2010), Electric power from offshore wind via synoptic-scale interconnection, Proc. Natl. Acad. Sci. U. S. A., 107, 72407245.
  • Lu, X., M. B. McElroy, and J. Kiviluoma (2009), Global potential for wind-generated electricity, Proc. Natl. Acad. Sci. U. S. A., 106, 10,93310,938, doi:10.1073/pnas.0904101106.
  • McAdie, C. J., C. W. Landsea, C. J. Neumann, J. E. David, and E. S. Blake (2006), Tropical cyclones of the North Atlantic Ocean, 1851–2006, Tech. Rep. HCS6-2 1851-2006, NOAA, Silver Spring, Md.
  • Novak, D. R., and B. A. Colle (2006), Observations of multiple sea breeze boundaries during an unseasonably warm day in metropolitan New York City, Bull. Am. Meteorol. Soc., 87(2), 169174.
  • Pielke, R. A., Sr. (2002), Mesoscale Meteorological Modeling, 464 pp., Academic, San Diego, Calif.
  • Pimenta, F., W. Kempton, and R. Garvine (2008), Combining meteorological stations and satellite data to evaluate the offshore wind power resource of southeastern Brazil, Renewable Energy, 33, 23752387.
  • Skamarock, W. C., J. B. Klemp, J. Dudhiha, D. O. Gill, D. M. Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers (2008), A description of the Advanced Research WRF version 3, NCAR Tech. Note NCAR/TN–475+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Stoutenburg, E. D., N. Jenkins, and M. Z. Jacobson (2010), Power output variations of co-located offshore wind turbines and wave energy converters in California, Renewable Energy, 35, 27812791, doi:10.1016/j.renene.2010.04.033.
  • Twidell, J., and G. Gaetano (2009), Offshore Wind Power, 357 pp., Multi-Science, Brentwood, U. K.
  • U.S. Census Bureau (2009), Table 1. Annual estimates of the resident population for the United States, regions, states, and Puerto Rico: April 1, 2000 to July 1, 2009, report, Washington, D. C.