The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth



[1] Electromagnetic ion cyclotron waves at high L values near local noon are often found to be related to magnetospheric compression events. These waves arise from temperature anisotropies in trapped warm plasma populations. There are several possible mechanisms that can generate these temperature anisotropies, including both energizing and nonenergizing processes. In this work we investigate a nonenergizing process arising from dayside bifurcated magnetic field minima. There are two kinds of behavior particles undergo in the presence of bifurcated minima: particles with high initial equatorial pitch angles (EPAs) are forced to execute so-called Shabansky orbits and mirror at high latitudes without passing through the equator, while those with lower initial EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies near the equator increase at the cost of parallel energies. By using a 3-D particle tracing code in a tunable analytic compressed-dipole field, we explore the effects of Shabansky orbits on the anisotropy of the warm plasma and contrast with the anisotropy resulting from drift shell splitting. We show that Shabansky orbits are an independent source of temperature anisotropy for warm dayside ions.