SEARCH

SEARCH BY CITATION

References

  • Abegaz, F., and U. Naik-Nimbalkar (2008a), Modeling statistical dependence of markov chains via copulas models, J. Stat. Plann. Inference, 138, 11311146, doi:10.1016/j.jspi.2007.04.028.
  • Abegaz, F., and U. Naik-Nimbalkar (2008b), Dynamic copula-based markov time series, Commun. Stat. Theory Methods, 37(15), 24472460, doi:10.1080/03610920801931846.
  • Athanassoulis, G., and C. Stefanakos (1995), A nonstationary stochastic model for long-term time series of significant wave height, J. Geophys. Res., 100(C8), 149162.
  • Borgman, L. E., and N. W. Scheffner (1991), Simulation of time sequences of wave height, period, and direction, Tech. Rep. TR-DRP-91-2, Coastal Eng. Res. Cent., U.S. Army Eng. Waterways Exp. Sta., Vicksburg, Miss.
  • Cai, Y., B. Gouldby, P. Dunning, and P. Hawkes (2007), A simulation method for flood risk variables, in Flood Risk Assessment II: Proceedings of a Conference Held by the Institute of Mathematics and its Applications, September 2007. Plymouth, U.K., September 4th–5th, 2007, IMA, Univ. of Minn., Minneapolis, ISBN:978-0-905091-20-4.
  • Cai, Y., B. Gouldby, P. Hawkes, and P. Dunning (2008), Statistical simulation of flood variables: Incorporating short-term sequencing, J. Flood Risk Manage., 1, 312.
  • Callaghan, D., P. Nielsen, A. Short, and R. Ranasinghe (2008), Statistical simulation of wave climate and extreme beach erosion, Coastal Eng., 55, 375390.
  • Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Springer, Berlin.
  • DeMichele, C., G. Salvadori, G. Passoni, and R. Velozzi (2007), A multivariate model of sea storms using copulas, Coastal Eng., 54, 734751.
  • de Waal, D., P. van Gelder, and A. Nel (2007), Estimating joint tail probabilities of river discharges through the logistic copula, Environmetrics, 18(6), 621631, doi:10.1002/env.
  • Fan, J., and Q. Yao (2005), Nonlinear Time Series. Nonparametric and Parametric Methods, Springer Sci., New York.
  • Fawcett, L., and D. Walshaw (2006), Markov chain models for extreme wind speeds, Environmetrics, 17, 795809.
  • Genest, C., and A.-C. Favre (2007), Everything you allways wanted to know about copula modeling and were afraid to ask, J. Hydrol. Eng., 12, 347367.
  • Guedes Soares, C., and C. Cunha (2000), Bivariate autoregressive models for the time series of sognificant wave height and mean period, Coastal Eng., 40, 297311.
  • Guedes Soares, C., and A. M. Ferreira (1996), Representation of non-stationary time series of significant wave height with autoregessive models, Prob. Eng. Mech., 11, 139148.
  • Guedes Soares, C., A. M. Ferreira, and C. Cunha (1996), Linear models of the time series of significant wave height on the southwest coast of portugal, Coastal Eng., 29, 149167.
  • Izaguirre, C., F. J. Mendez, M. Menendez, A. Luceño, and I. J. Losada (2010), Extreme wave climate variability in southern Europe using satellite data, J. Geophys. Res., 115, C04009, doi:10.1029/2009JC005802.
  • Jaworski, P., F. Durante, H. Wolfgang, and T. Rychlik (Eds.) (2010), Copula Theory and Its Applications, Proceeding of the Workshop Held in Warsaw, 25–26 September 2009, Springer, New York.
  • Joe, H. (1997), Monogr. on Stat. and Appl. Prob., vol. 73, Multivariate Models and Dependence Concepts, 1st ed., Chapman and Hall, London.
  • Losada, M. A. (2002), ROM 0.0: General Procedure and Requirements in the Design of Harbor and Maritime Structures. Part I, Puertos del Estado, Spain.
  • Luceño, A., M. Menéndez, and F. Méndez (2006), The effect of temporal dependence on the estimation of the frequency of extreme ocean climate events, Proc. R. Soc. A, 462, 16381697.
  • Méndez, F. J., M. Menéndez, A. Luceño, and I. J. Losada (2006), Estimation of the long-term variability of extreme significant wave height using a time-dependent peak over threshold (pot) model, J. Geophys. Res., 111, C07024, doi:10.1029/2005JC003344.
  • Méndez, F. J., M. Menéndez, A. Luceño, R. Medina, and N. E. Graham (2008), Seasonality and duration in extreme value distributions of significant wave height, Ocean Eng., 35, 131138.
  • Monbet, V., P. Ailliot, and M. Prevosto (2007), Survey of stochastic models for wind and sea state time series, Prob. Eng. Mech., 22, 113126.
  • Nai, J., P. van Gelder, P. Kerssens, Z. Wang, and E. van Beek (2004), Copula approach for flood probability analysis of the Huangpu River during barrier closure, in Proceeding of the 29th International Coastal Engineering Conference. Lisbon, Portugal, edited by J. McKee Smith, pp. 15911603, World Sci., Hackensack, N. J.
  • Nelsen, R. B. (2006), An Introduction to Copulas, Springer Series in Statistics, 2nd ed., Springer, New York.
  • Payo, A., A. Baquerizo, and M. A. Losada (2008), Uncertainty assessment: Application to the shoreline, J. Hydraul. Res., 46, 96104.
  • Ribatet, M., T. B. M. J. Ouarda, E. Sauquet, and J.-M. Gresillon (2009), Modeling all exceedances above a threshold using an extremal dependence structure: Inference on several flood characteristics, Water Resour. Res., 45, W03407, doi:10.1029/2007WR006322.
  • Ruggiero, P., P. D. Komar, and J. C. Allan (2010), Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest, Coastal Eng., doi:10.1016/j.coastaleng.2009.12.005.
  • Salvadori, G., C. De Michele, N. T. Kottegoda, and R. Rosso (2007), Water Sci. and Technol. Library, vol. 56, Extreme in Nature. An Approach Using Copulas, 1st ed., Springer, New York.
  • Scheffner, N. W., and L. E. Borgman (1992), Stochastic time-series representation of wave data, J. Waterway Port Coastal Ocean Eng., 118(4), 337351.
  • Scotto, M., and C. Guedes Soares (2000), Modelling the long-term series of significant wave height with non-linear threshold models, Coastal Eng., 40, 313327.
  • Serinaldi, F., and S. Grimaldi (2007), Fully nested 3-copula: Procedure and application on hydrological data, J. Hydrol. Eng., 12, 420430.
  • Smith, R. L., J. A. Tawn, and S. G. Coles (1997), Markov chain models for thereshold exceedances, Biometrika, 84(2), 249268.
  • Stefanakos, C. (1999), Nonstationary stochastic modelling of time series with applications to environmental data, Ph.D. thesis, Tech. Univ. of Athenas, Athens.
  • Stefanakos, C., and G. Athanassoulis (2001), A unified methodology for the analysis, completion and simulation of nonstationary time series with missing values, with application to wave data, Appl. Ocean Res., 23(4), 207220, doi:10.1016/S0141-1187(01)00017-7.
  • Stefanakos, C. N., and G. A. Athanassoulis (2003), Bivariate stochastic simulation based on nonstationary time series modelling, in Proceedings of The Thirteenth International Offshore and Polar Engineering Conference Honolulu, Hawaii, USA, May 25–30, 2003,, pp. 46–50, ISOPE, Cupertino, Calif., ISBN:1-880653-60-5.
  • Stefanakos, C., G. Athanassoulis, and S. F. Barstow (2006), Time series modeling of significant wave height in multiple scales, combining various sources of data, J. Geophys. Res., 111, C10001, doi:10.1029/2005JC003020.
  • Stefanakos, C. N., and K. A. Belibassakis (2005), Nonstationary stochastic modelling of multivariate long-term wind and wave data, in Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2005) Halkidiki, Greece, June 12–16, 2005 [CDROM], ASME, New York, ISBN:978-0791837597.
  • Walton, T. L., and L. E. Borgman (1990), Simulation of nonstationary, non-gaussian water levels on great lakes, J. Waterway Port Coastal Ocean Eng., 116(6), 664685.