SEARCH

SEARCH BY CITATION

Keywords:

  • Mediterranean Outflow Water;
  • North Atlantic Ocean;
  • atmospheric forcing;
  • long-term variability;
  • pathway shifts

[1] Recent work has shown that variability in the properties and/or transport of Mediterranean Seawaters spilling across the Strait of Gibraltar into the North Atlantic have had little impact on the variability of Mediterranean Outflow Water (MOW) in the that basin over the past fifty years. Here we investigate whether circulation changes are the dominant source of MOW variability in the North Atlantic between 1948 and 2006. Using a 1/3° North Atlantic configuration of the HYbrid Coordinate Ocean Model combined with the Marginal Sea Boundary Condition model, two simulations forced by either climatological or interannual atmospheric fields are performed. The interannual simulation reproduces the observed MOW variability without Mediterranean Seawater changes. Thus, we conclude that MOW variability in the last 60 years is a consequence of circulation changes in the North Atlantic. A series of simulations that separate the mechanical effect of the wind from the impact of buoyancy forcing show that MOW variability can be attributed to shifts between its dominant northward and westward pathways. The pathway shifts from predominantly northward between 1950 and 1975 to predominantly westward between 1975 and 1995 and finally back to northward after 1995. Though these pathway shifts appear to be wind-induced, the property changes are caused by the combined impact of wind and buoyancy forcing on the circulation of the North Atlantic.