SEARCH

SEARCH BY CITATION

Keywords:

  • SOA formation;
  • stable carbon isotope ratio

[1] The temperature dependence of the kinetic isotope effect (KIE) of β-pinene ozonolysis was investigated experimentally at 258, 273 and 303 K in the AIDA atmospheric simulation chamber. Compound specific carbon isotopic analysis of gas phase samples was performed off-line with a Thermo Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS) system. From the temporal behavior of the δ13C of β-pinene a KIE of 1.00358 ± 0.00013 was derived at 303 K, in agreement with literature data. Furthermore, KIE values of 1.00380 ± 0.00014 at 273 K and 1.00539 ± 0.00012 at 258 K were determined, showing an increasing KIE with decreasing temperature. A parameterization of the observed KIE temperature dependence was deduced and used in a sensitivity study carried out with the global chemistry transport model MOZART-3. Two scenarios were compared, the first neglecting, the second implementing the KIE temperature dependence in the simulations. β-Pinene stable carbon isotope ratio and concentration were computed, with emphasis on boreal zones. For early spring it is shown that when neglecting the temperature dependence of KIE, the calculated average age of β-pinene in the atmosphere can be up to two times over- or underestimated. The evolution of the isotopic composition of the major β-pinene oxidation product, nopinone, was examined using Master Chemical Mechanism (MCM) simulations. The tested hypothesis that formation of nopinone and its associated KIE are the determining factors for the observed δ13C values of nopinone is supported at high β-pinene conversion levels.