Climate model simulated changes in temperature extremes due to land cover change



[1] A climate model, coupled to a sophisticated land surface scheme, is used to explore the impact of land use induced land cover change (LULCC) on climate extremes indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The impact from LULCC is contrasted with the impact of doubling atmospheric carbon dioxide (CO2). Many of the extremes indices related to temperature are affected by LULCC and the resulting changes are locally and field significant. Some indices are systematically affected by LULCC in the same direction as increasing CO2 while for others LULCC opposes the impact of increasing CO2. We suggest that assumptions that anthropogenically induced changes in temperature extremes can be approximated just by increasing greenhouse gases are flawed, as LULCC may regionally mask or amplify the impact of increasing CO2 on climate extremes. In some regions, the scale of the LULCC forcing is of a magnitude similar to the impact of CO2 alone. We conclude that our results complicate detection and attribution studies, but also offer a way forward to a clearer and an even more robust attribution of the impact of increasing CO2 at regional scales.