Get access

Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010



[1] In this work we characterize optical properties and assess the direct radiative effect of an ash plume observed on April 17, 2010 by AERONET, lidar and broadband solar flux measurements collocated on the roof of the Laboratory of Atmospheric Optics in Lille, northern France. These measurements allowed experimental evaluation of ash radiative impact and validation of simulations. The derived aerosol model of ash is characterized by a bi-modal size distribution dominated by coarse mode centered at a radius of 1.5 μm and by relatively strong absorption at short wavelengths (single scattering albedo of 0.81 ± 0.02 at 440 nm as opposed to 0.92 ± 0.02 at 670, 870 and 1020 nm). Due to relatively low aerosol optical thickness during the ash plume transport (∼0.26 at 440 nm), which is unfavorable for AERONET retrievals, the uncertainties in derived ash aerosol model were additionally evaluated. The complex refractive index of ash was derived assuming that effective refractive index retrieved by AERONET for externally mixed bi-component aerosol can be approximated as an average of refractive indices of two components weighted by their volume concentrations. Evaluation of the accuracy of this approximation showed acceptably small errors in simulations of single scattering albedo and aerosol phase function over the range of scattering angles observed by the AERONET almucantar. Daily average radiative forcing efficiency of ash calculated for a land surface reflectance representing Lille was about −93 ± 12 Wm−2 τ550−1 and −31 ± 2 Wm−2 τ550−1 at the bottom and top of the atmosphere; the values for an ocean surface reflectance are also provided.

Get access to the full text of this article