SEARCH

SEARCH BY CITATION

References

  • Bissolli, P., and E. Dittmann (2001), The objective weather types classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations, Meteorol. Z., 10, 253260.
  • Bissolli, P., J. Grieser, N. Dotzek, and M. Welsch (2007), Tornadoes in Germany 1950–2003 and their relation to particular weather conditions, Global Planet. Change, 57, 124138.
  • Brooks, H. E., J. W. Lee, and J. Craven (2003), The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data, Atmos. Res., 67, 7394.
  • Cao, Z. (2008), Severe hail frequency over Ontario, Canada: Recent trend and variability, Geophys. Res. Lett., 35, L14803, doi:10.1029/2008GL034888.
  • Changnon, S. A. (1970), Hailstreaks, J. Atmos. Sci., 27, 109125.
  • Clarke, G. M., and D. Cooke (2004), A Basic Course in Statistics, 492 pp., John Wiley, London.
  • DeRubertis, D. (2006), Recent trends in four common stability indices derived from US radiosonde observations, J. Clim., 19, 309323.
  • Dessens, J. (1986), Hail in southwestern France: Hailfall characteristics and hailstorm environment, J. Clim. Appl. Meteorol., 25, 3547.
  • Doswell III, C. A. (1987), The distinction between large-scale and mesoscale contributions to severe convection: A case study example, Weather Forecast., 2, 316.
  • Egli, T. (2007), Elementarschutzregister Hagel, technical report, 35 pp., Kantonale Gebäudeversicherungen, Bern.
  • Ehmann, C. (2009), Analyse der vorherrschenden Großwetterlagen während Hagelereignissen in Baden-Württemberg, seminar thesis, 72 pp. Inst. for Meteorol. and Clim. Res., Karlsruhe Inst. for Technol., Karlsruhe, Germany.
  • Emanuel, K. (1994), Atmospheric Convection, 580 pp., Oxford Univ. Press, Oxford, U. K.
  • Feser, F., B. Rockel, H. vonStorch, J. Winterfeldt, and M. Zahn (2011), Regional climate models add value to global model data–A review and selected examples, Bull. Am. Meteorol. Soc., 92, 11811192.
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004), Bayesian Data Analysis, 689 pp., Chapman and Hall, Boca Raton, Fla.
  • Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer (2005), The rationale behind the success of multi-model ensembles in seasonal forecasting–I. Basic concept, Tellus, Ser. A, 57, 219233.
  • Haklander, A. J., and A. vanDelden (2003), Thunderstorm predictors and their forecast skill for the Netherlands, Atmos. Res., 67–68, 273299.
  • Hanafin, J., R. McGrath, T. Semmler, S. Wang, P. Lynch, S. Steele-Dunne, and P. Nolan (2011), Air flow and stability indices in GCM future and control runs, Int. J. Climatol., 31, 12401247.
  • Harris, G. R., M. Collins, D. M. H. Sexton, J. M. Murphy, and B. B. B. Booth (2010), Probabilistic projections for 21st century European climate, Nat. Hazards Earth Syst. Sci., 10, 20092020.
  • Hawkins, E. and R. Sutton (2009), The potential to narrow uncertainty in regional climate predictions, Bull. Am. Meteor. Soc., 90, 10951107.
  • Hess, P., and H. Brezowsky (1977) Katalog der Grosswetterlagen Europas, Tech. Rep. 113, 14 + , 54 pp., Ber. Dtsch. Wetterdienst., Potsdam, Germany.
  • IPCC (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Kendall, M. (1975), Rank Correlation Methods, 260 pp., Griffin, London.
  • Kunz, M. (2007), The skill of convective parameters and indices to predict isolated and severe thunderstorms, Nat. Hazards Earth Syst. Sci., 7, 327342.
  • Kunz, M., and M. Puskeiler (2010), High-resolution assessment of the hail hazard over complex terrain from radar and insurance data, Meteorol. Z., 19, 427439.
  • Kunz, M., J. Sander, and C. Kottmeier (2009), Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany, Int. J. Climatol., 29, 22832297.
  • Lautenschlager, M., K. Keuler, C. Wunram, E. Keup-Thiel, M. Schubert, A. Will, B. Rockel, and U. Boehm (2009a), Climate Simulation with CLM. Climate of the 20th Century run no. 1. Data Stream 3: European region MPI-M/MaD, http://dx.doi.org/10.1594/WDCC/CLM_C20_1_D3, World Data Cent. for Clim., Hamburg, Germany.
  • Lautenschlager, M., K. Keuler, C. Wunram, E. Keup-Thiel, M. Schubert, A. Will, B. Rockel, and U. Boehm (2009b), Climate Simulation with CLM. Climate of the 20th Century run no. 2. Data Stream 3: European region MPI-M/MaD, http://dx.doi.org/10.1594/WDCC/CLM_C20_2_D3, World Data Cent. for Clim., Hamburg, Germany.
  • Leslie, L. M., M. Leplastrier, and B. W. Buckley (2007), Estimating future trends in severe hailstorms over the Sydney Basin: A climate modelling study, Atmos. Res., 87, 3751.
  • Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugil, and J. D. Scott (2012), Changes in hail and flood risk in high-resolution simulations over Colorado's mountains, Nat. Clim. Change, 2, 125131.
  • Mann, H. B. (1945), Nonparametric tests against trend, Econometrica, 13, 245259.
  • Marsh, P. T., H. E. Brooks, and D. J. Karoly (2009) Preliminary investigation into the severe thunderstorm environment of Europe simulated by the Community Climate System Model 3, Atmos. Res., 93, 607618.
  • Noppel, H., U. Blahak, A. Seifert, and K. D. Beheng (2010), Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme, Atmos. Res., 96, 286301.
  • Rockel, B., A. Will, and A. Hense (2008), The Regional Climate Model COSMO-CLM (CCLM), Meteorol. Z., 17, 347348.
  • Roeckner, E., et al. (2003), The atmospheric general circulation model ECHAM5. Part I: Model description. MPI-Rep. 349, Max-Planck-Inst. für Meteorol., Hamburg, Germany.
  • Roeckner, E., R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E. Manzini, U. Schlese, and U. Schulzweida (2006), Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. Clim., 19, 37713791.
  • Sauvageot, H. (1992), Radar Meteorology, 366 pp., Artech House, Norwood, Mass.
  • Schiesser, H. (2003), Extremereignisse und Klimaänderung, chap. 2.6, pp. 6568, OcCC, Bern.
  • Spiegelhalter, D. J., A. Thomas, N. G. Best, and D. Lunn (2003), WinBUGS Version 1.4 user manual, MRC Biostat. Unit, Inst. of Public Health, Cambridge, U. K. [Available at http://www.mrc-bsu.cam.ac.uk/bugs].
  • Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler (2011), Regional climate of hazardous convective weather through high-resolution dynamical downscaling, Clim. Dyn., 37, 677688.
  • Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Q. J. R. Meteorol. Soc., 131, 29613012.
  • Van Klooster, S. L., and P. J. Roebber (2009), Surface-based convective potential in the contiguous United States in a business-as-usual future climate, J. Clim., 22, 33173330.
  • Yarnal, B., A. C. Comrie, B. Frakes, and D. P. Brown (2001) Review: Developments and prospects in synoptic climatology, Int. J. Climatol., 21, 19231950.
  • Yue, S., P. Pilon, B. Phinney, and G. Cavadias (2002) The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Process., 16, 18071829.