SEARCH

SEARCH BY CITATION

References

  • Alila, Y. (1999), A hierarchical approach for the regionalization of precipitation annual maxima in Canada, J. Geophys. Res., 104(D24), 31,645631,655, doi:610.1029/1999JD900764.
  • Asquith, W. (1998), Depth-duration frequency of precipitation for Texas, U.S. Geological Survey Water-Resources Investigations Report 98-4044, 107 pp., Austin, Tex.
  • Beckers, J., and Y. Alila (2004), A model of rapid preferential hillslope runoff contributions to peak flow generation in a temperate rain forest watershed, Water Resour. Res., 40, W03501, doi:10.1029/2003WR002582.
  • Botero, B., and F. Francés (2010), Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models, Hydrol. Earth Syst. Sci., 14(12), 26172628, doi:10.5194/hess-14-2617-2010.
  • Carr, J. (1967), The climate and physiography of Texas, Report 53, Texas Water Development Board, Austin, Tex.
  • Eisenberger, I. (1964), Genesis of bimodal distributions, Technometrics, 6(4), 357363, doi:10.1080/00401706.1964.10490199.
  • Gringorten, I. I. (1963), A plotting rule for extreme probability paper, J. Geophys. Res., 68(3), 813814, doi:10.1029/JZ068i003p00813.
  • Huff, F. A., and J. R. Angel (1992), Rainfall frequency atlas of the Midwest, Bulletin 71, Illinois State Water Survey, Champaign, Ill.
  • Jaynes, E. (1957), Information theory and statistical mechanics, Phys. Rev., 106(4), 620630, doi:10.1103/PhysRev.106.620.
  • Katz, R. W., M. B. Parlange, and P. Naveau (2002), Statistics of extremes in hydrology, Adv. Water Resour., 25(8–12), 12871304, doi:10.1016/S0309-1708(02)00056-8.
  • Kesavan, H., and J. Kapur (1992), Entropy Optimization Principles with Applications, Academic Press, New York.
  • Larkin, T., and G. Bomar (1983), Climatic atlas of Texas, Report LP-192, Texas Dept. of Water Resources, Austin, Tex.
  • Matz, A. (1978), Maximum likelihood parameter estimation for the quartic exponential distribution, Technometrics, 20(4), 475484, doi:10.1080/00401706.1978.10489702.
  • Mead, L., and N. Papanicolaou (1984), Maximum entropy in the problem of moments, J. Math. Phys., 25(8), 24042417, doi:10.1063/1.526446.
  • Montgomery, D. C., and G. C. Runger (2010), Applied Statistics and Probability for Engineers, John Wiley & Sons, New York.
  • National Fibers Information Center (1987), The Climate of Texas Counties, Univ. of Texas, Austin and Texas A&M University, College Station, Tex.
  • North, G., J. Schmandt, and J. Clarkson (1995), The Impact of Global Warming on Texas, Univ. of Texas Press, Austin, Tex.
  • Parrett, C. (1997), Regional analysis of annual precipitation maxima in Montana, U.S. Geological Survey Water-Resources Investigations Report 97-4004, 51 pp., Helena, Mont.
  • Schaefer, M. (1990), Regional analyses of precipitation annual maxima in Washington State, Water Resour. Res., 26(1), 119131, doi:10.1029/WR026i001p00119.
  • Shannon, C., and W. Weaver (1949), The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana, Ill.
  • Shannon, C. E. (1948), A mathematical theory of communications, Bell Syst. Tech. J., 27(7), 379423.
  • Singh, V. P. (1992), Elementary Hydrology, Prentice Hall, Upper Saddle River, N.J.
  • Smith, J. (1993), Moment methods for decision analysis, Management Sci., 39(3), 340358, doi:10.1287/mnsc.39.3.340.
  • Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou (1993), Frequency analysis of extreme events, in Handbook of Hydrology, edited by D. R. Maidment, pp. 18.118.66, McGraw-Hill, New York.
  • Towler, E., B. Rajagopalan, E. Gilleland, R. S. Summers, D. Yates, and R. W. Katz (2010), Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory, Water Resour. Res., 46, W11504, doi:10.1029/2009WR008876.
  • Wu, X. (2003), Calculation of maximum entropy densities with application to income distribution, J. Econom., 115(2), 347354, doi:10.1016/S0304-4076(03)00114-3.
  • Zellner, A., and R. Highfield (1988), Calculation of maximum entropy distributions and approximation of marginal posterior distributions, J. Econom., 37(2), 195209, doi:10.1016/0304-4076(88)90002-4.