SEARCH

SEARCH BY CITATION

References

  • Abramov, O., S. M. Wong, and D. A. Kring (2012), Differential melt scaling for oblique impacts on terrestrial planets, Icarus, doi:10.1016/j.icarus.2011.12.022, in press.
  • Ashley, J. W., et al., and the LROC Science Team (2011), Geologic mapping of the King crater region with an emphasis on melt pond anatomy: Evidence for subsurface drainage on the Moon, Lunar Planet. Sci., XLII, Abstract 2437.
  • Baldwin, R. B. (1949), The Face of the Moon, Univ. of Chicago Press, Chicago, Ill.
  • Baldwin, R. B. (1963), The Measure of the Moon, Univ. of Chicago Press, Chicago, Ill.
  • Basilevsky, A. T., N. N. Grebennik, and I. M. Chernaya (1977), Photogeologic study of lunar crater rays: Nature of rays and age of crater Kepler, Lunar Sci., VIII, 7072.
  • Bray, V. J., et al. (2010), New insight into lunar impact melt mobility from the LRO camera, Geophys. Res. Lett., 37, L21202, doi:10.1029/2010GL044666.
  • Broxton, M. J., and L. J. Edwards (2008), The Ames Stereo Pipeline: Automated 3D surface reconstruction from orbital imagery, Lunar Planet. Sci., XXXIX, Abstract 2419.
  • Bugiolacchi, R., U. Mall, M. Bhatt, S. McKenna-Lawlor, M. Banaszkiewicz, K. Brønstad, A. Nathues, F. Søraas, K. Ullaland, and R. B. Pedersen (2011), An in-depth look at the lunar crater Copernicus: Exposed mineralogy by high-resolution near-infrared spectroscopy, Icarus, 213, 4363, doi:10.1016/j.icarus.2011.02.023.
  • Cintala, M. J., and R. A. F. Grieve (1998), Scaling impact melting and crater dimensions: Implications for lunar cratering record, Meteorit. Planet. Sci., 33, 889912, doi:10.1111/j.1945-5100.1998.tb01695.x.
  • Collins, G. S., H. J. Melosh, and R. A. Marcus (2005), Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteorit. Planet. Sci., 40(6), 817840, doi:10.1111/j.1945-5100.2005.tb00157.x.
  • Cooper, B. L., J. L. Carter, and C. A. Sapp (1994), New evidence for graben origin of Oceanus Procellarum from lunar sounder optical imagery, J. Geophys. Res., 99(E2), 37993812, doi:10.1029/93JE03096.
  • Croft, S. K. (1980), Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation, Proc. Lunar Planet. Sci. Conf., 11th, 23472378.
  • d'Angelo, P., and C. Wöhler (2008), Image-based 3D surface reconstruction by combination of photometric, geometric, and real-aperture methods, ISPRS J. Photogramm. Remote Sens., 63(3), 297321, doi:10.1016/j.isprsjprs.2007.09.005.
  • De Hon, R. A. (1979), Thickness of the western mare basalts, Proc. Lunar Planet. Sci. Conf., 10th, 29352955.
  • Einstein, A. (1906), Eine neue Bestimmung der Molekül-dimensionen, Ann. Phys., 19, 289306, doi:10.1002/andp.19063240204.
  • Einstein, A. (1911), Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekül-dimensionen, Ann. Phys., 34, 591592, doi:10.1002/andp.19113390313.
  • El-Baz, F. (1972), King crater and its environs, NASA Spec. Publ., NASA SP-315, 29-6229-70.
  • Elger, T. G. (1895), The Moon: A Full Description and Map of Its Principal Physical Features [electronic], George Philip, London. (Available at http://www.gutenberg.org/etext/17712)
  • Fielder, G. (1961), Structure of the Moon's surface, Pergamon, New York.
  • Gault, D. E., and J. A. Wedekind (1978), Experimental studies of oblique impact, Proc. Lunar Planet. Sci. Conf., 9th, 38433875.
  • Gay, E. C., P. A. Nelson, and W. P. Armstrong (1969), Flow properties of suspensions with high solids concentration, AIChE J., 15(6), 815822, doi:10.1002/aic.690150606.
  • Ghiorso, M. S., and R. O. Sack (1995), Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 119, 197212, doi:10.1007/BF00307281.
  • Gilbert, G. K. (1893), The Moon's face: A study of the origin of its features, Bull. Philos. Soc. Washington, 12, 241292.
  • Guest, J. E. (1973), Stratigraphy of ejecta from the lunar crater Aristarchus, Geol. Soc. Am. Bull., 84, 28732894, doi:10.1130/0016-7606(1973)84<2873:SOEFTL>2.0.CO;2.
  • Hackman, R. J. (1962), Geologic map and sections of the Kepler region of the Moon, U.S. Geol. Surv. Map, I-355(LAC-57), scale 1:1,000,000, U.S. Geol. Surv., Reston, Va.
  • Hale, W. S., and R. A. F. Grieve (1982), Volumetric analysis of complex lunar craters: Implications for basin formation, Proc. Lunar Planet. Sci. Conf. 13th, Part 1, J. Geophys. Res., 87, suppl., A65A76, doi:10.1029/JB087iS01p00A65.
  • Harrison, D. A., R. A. Ambrose, B. Bluethmann, and L. Junkin (2008), Next generation rover for lunar exploration, paper presented at 2008 IEEE Aerospace Conference, Inst. of Electr. and Electron. Eng., Big Sky, Mont., 1–8 March, doi:10.1109/AERO.2008.4526234.
  • Haruyama, J., T. Matsunaga, M. Ohtake, T. Morota, C. Honda, Y. Yokota, M. Torii, and Y. Ogawa, and the LISM Working Group (2008), Global lunar-surface mapping experiment using Lunar Imager/Spectrometer on SELENE, Earth Planets Space, 60, 243255.
  • Haskin, L., and P. Warren (1991), Lunar chemistry, in Lunar Sourcebook, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 357474, Cambridge Univ. Press, New York.
  • Haskin, L. A., R. L. Korotev, K. M. Rockow, and B. L. Jolliff (1998), The case for an Imbrium origin of the Apollo thorium-rich impact-melt breccias, Meteorit. Planet. Sci., 33, 959975, doi:10.1111/j.1945-5100.1998.tb01703.x.
  • Hawke, B. R., and J. W. Head (1977), Impact melt on lunar crater rims, in Impact and Explosion Cratering, edited by D. J. Roddy, R. O. Pepin, and R. B. Merrill, pp. 815841, Pergamon, New York.
  • Heather, D. J., and S. K. Dunkin (2002), A stratigraphic study of southern Oceanus Procellarum using Clementine multispectral data, Planet. Space Sci., 50, 12991309, doi:10.1016/S0032-0633(02)00124-1.
  • Heather, D. J., and S. K. Dunkin (2003), Geology and stratigraphy of King crater, lunar farside, Icarus, 163, 307329, doi:10.1016/S0019-1035(02)00063-5.
  • Herrick, R. R., and N. K. Forsberg-Taylor (2003), The shape and appearance of craters formed by oblique impact on the Moon and Venus, Meteorit. Planet. Sci., 38(11), 15511578, doi:10.1111/j.1945-5100.2003.tb00001.x.
  • Hiesinger, H., J. W. Head III, U. Wolf, R. Jaumann, and G. Neukum (2003), Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum, J. Geophys. Res., 108(E7), 5065, doi:10.1029/2002JE001985.
  • Hirata, N., et al. (2009), Morphological analyses of Tycho crater with Kaguya data, Lunar Planet. Sci., XL, Abstract 1514.
  • Hirata, N., et al. (2010), Remote sensing study of a large lunar crater Jackson, Lunar Planet. Sci., XLI, Abstract 1585.
  • Hörz, F. (1978), How thick are lunar mare basalt?, Proc. Lunar Planet. Sci. Conf., 9th, 33113331.
  • Howard, K. A. (1971), The Apollo 10 lunar highlands, NASA Spec. Publ., NASA SP-232, 1214.
  • Howard, K. A. (1972), Ejecta blankets of large craters exemplified by King crater, NASA Spec. Publ., NASA SP-315, 29-7029-77.
  • Howard, K. A. (1975), Geologic map of the crater Copernicus, U.S. Geol. Surv. Map, I-840, scale 1:250 000, U.S. Geol. Surv., Reston, Va.
  • Howard, K. A., and H. G. Wilshire (1975), Flows of impact melt at lunar craters, J. Res. U.S. Geol. Surv., 3(2), 237251.
  • Hulme, G. (1974), The interpretation of lava flow morphology, Geophys. J. R. Astron. Soc., 39, 361383.
  • Hulme, G., and G. Fielder (1977), Effusion rates and rheology of lunar lavas, Philos. Trans. R. Soc. London, Ser. A, 285, 227234, doi:10.1098/rsta.1977.0059.
  • Jeffreys, H. (1925), The flow of water in an inclined channel of rectangular section, Philos. Mag., 49(293), 793807.
  • Jolliff, B. L., J. J. Gillis, L. A. Haskin, R. L. Korotev, and M. A. Wieczorek (2000), Major lunar crustal terranes: Surface expressions and crust-mantle origins, J. Geophys. Res., 105(E2), 41974216, doi:10.1029/1999JE001103.
  • König, B., G. Neukum, and H. Fechtig (1977), Recent lunar cratering: Absolute ages of Kepler, Aristarchus, Tycho, Lunar Sci., VIII, 555557.
  • Korotev, R. L. (2000), The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact-melt breccias, J. Geophys. Res., 105(E2), 43174345, doi:10.1029/1999JE001063.
  • Krieger, I. M., and T. J. Dougherty (1959), A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol., 3, 137152, doi:10.1122/1.548848.
  • Kring, D. A. (1995), The dimensions of the Chicxulub impact crater and impact melt sheet, J. Geophys. Res., 100(E8), 16,97916,986, doi:10.1029/95JE01768.
  • Kring, D. A. (2005), Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: Comparing the Ries (∼24 km) and Chicxulub (∼180 km) impact craters, Chem. Erde Geochem., 65(1), 146.
  • Kring, D. A. (2009), Targeting complex craters and multi-ring basins to determine the tempo of impact bombardment while simultaneously probing the lunar interior, 6037, paper presented at the Lunar Reconnaissance Orbiter Science Targeting Meeting, Lunar and Planet. Inst., Tempe, Ariz., 9–11 June.
  • Kring, D. A., J. D. Rademacher, and B. Dobson (2007), A rover-based strategy for the robotic and human phases of the lunar exploration initiative, paper presented at the NASA Advisory Council Workshop on Science Associated with the Lunar Exploration Architecture, Lunar and Planet. Inst., Tempe, Ariz., 27 February to 2 March.
  • Kuiper, G. P., E. A. Whitaker, R. G. Strom, J. W. Fountain, and S. M. Larson (1967), The Consolidated Lunar Atlas [digital version by E. Douglass and M. S. O'Dell, 2003], Lunar Planet. Inst., Houston, Tex.
  • Lawrence, D. J., R. C. Elphic, W. C. Feldman, T. H. Prettyman, O. Gasnault, and S. Maurice (2003), Small-area thorium features on the lunar surface, J. Geophys. Res., 108(E9), 5102, doi:10.1029/2003JE002050.
  • Le Mouélic, S., Y. Langevin, and S. Erard (1999), A new data reduction approach for the Clementine NIR data set: Application to Aristillus, Aristarchus and Kepler, J. Geophys. Res., 104(E2), 38333843, doi:10.1029/1998JE900035.
  • Lena, R., and C. Wöhler (2009), Effusive lunar domes near Kepler and Piccolomini: Morphometry and mode of emplacement, Lunar Planet. Sci., XL, Abstract 1092.
  • Lucey, P. G., D. T. Blewett, and B. L. Jolliff (2000), Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images, J. Geophys. Res., 105(E8), 20,29720,305, doi:10.1029/1999JE001117.
  • Lunar Exploration Science Working Group (LExSWG) (1995), Lunar surface exploration strategy, final report, 50 pp, Lunar Planet. Inst., Houston, Tex.
  • McCord, T. B., M. P. Charette, T. V. Johnson, L. A. Lebofsky, and C. Pieters (1972), Lunar spectral types, J. Geophys. Res., 77(8), 13491359, doi:10.1029/JB077i008p01349.
  • McGetchin, T. R., M. Settle, and J. W. Head (1973), Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits, Earth Planet. Sci. Lett., 20, 226236, doi:10.1016/0012-821X(73)90162-3.
  • McGovern, P. J., and M. M. Litherland (2011) Lithospheric stress and basaltic magma ascent on the Moon, with implications for large volcanic provinces and edifices, Lunar Planet. Sci., XLII, Abstract 2587.
  • Moore, H. J., and J. A. Ackerman (1989), Martian and terrestrial lava flows, NASA Tech. Memo. TM-4130, 387389.
  • Moore, H. J., D. W. G. Arthur, and G. G. Schaber (1978), Yield strengths of flows on the Earth, Mars, and Moon, Proc. Lunar Planet. Sci. Conf., 9th, 33513378.
  • Moratto, Z. M., M. J. Broxton, R. A. Beyer, M. Lundy, and K. Husmann (2010), Ames Stereo Pipeline, NASA's open source automated stereogrammetry software, Lunar Planet. Sci., XLI, Abstract 2364.
  • Morota, T., et al. (2011), Timing and characteristics of the latest mare eruption on the Moon, Earth Planet. Sci. Lett., 302, 255266, doi:10.1016/j.epsl.2010.12.028.
  • Morris, A. R., J. W. Head, J.-L. Margot, and D. B. Campbell (2000), Impact melt distribution and emplacement on Tycho: A new look at an old question, Lunar Planet. Sci., XXXI, Abstract 1828.
  • Mueller, S., E. W. Llewellin, and H. M. Mader (2011), The effect of particle shape on suspension viscosity and implications for magmatic flows, Geophys. Res. Lett., 38, L13316, doi:10.1029/2011GL047167.
  • Mustard, J. F., et al. (2011), Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data, J. Geophys. Res., 116, E00G12, doi:10.1029/2010JE003726.
  • National Research Council of the National Academies (NRC) (2007), The scientific context for exploration of the Moon, final report, 107 pp., Natl. Acad. Press, Washington, D. C.
  • Oberbeck, V. R. (1975), The role of ballistic erosion and sedimentation in lunar stratigraphy, Rev. Geophys., 13, 337362, doi:10.1029/RG013i002p00337.
  • Öhman, T. (2009), The structural control of polygonal impact craters, Res Terrae, Ser. A, 28, 252 pp.
  • Patapoff, H. (1967), Site accessibility analysis for advanced lunar missions, final report, vol. 1, Summary, TRW Note 67-FMT-521. (Available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670027999_1967027999.pdf).
  • Petford, N. (2009), Which effective viscosity?, Mineral. Mag., 73(2), 167191, doi:10.1180/minmag.2009.073.2.167.
  • Pieters, C. (1977), Characterization of lunar mare basalt types: II. Spectral classification of fresh mare craters, Proc. Lunar Sci. Conf. 8th, 10371048.
  • Pike, R. J. (1977), Size-dependence in the shape of fresh impact craters on the Moon, in Impact and Explosion Cratering, edited by D. J. Roddy, R. O. Pepin, and R. B. Merrill, pp. 489509, Pergamon, New York.
  • Pinkerton, H., and R. J. Stevenson (1992), Methods of determining the rheological properties of magmas at sub-liquidus temperatures, J. Volcanol. Geotherm. Res., 53, 4766, doi:10.1016/0377-0273(92)90073-M.
  • Pohl, J., D. Stöffler, G. Gall, and K. Ernstson (1977), The Ries impact crater, in Impact and Explosion Cratering, edited by D. J. Roddy, R. O. Pepin, and R. B. Merrill, pp. 343404, Pergamon, New York.
  • Quaide, W. L., and V. R. Oberbeck (1968), Thickness determinations of the lunar surface layer from lunar impact craters, J. Geophys. Res., 73(16), 52475270, doi:10.1029/JB073i016p05247.
  • Quaide, W., and V. Oberbeck (1975), Development of the mare regolith: Some model considerations, Moon, 13, 2755, doi:10.1007/BF00567506.
  • Reid, A. M., A. R. Duncan, and S. H. Richardson (1977), In search of LKFM, Proc. Lunar Sci. Conf. 8th, 23212338.
  • Robinson, M. S., et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 150, 81124, doi:10.1007/s11214-010-9634-2.
  • Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys., 3, 267269, doi:10.1088/0508-3443/3/8/306.
  • Ryder, G., and J. F. Bower (1976), Sample 15405, in Interdisciplinary Studies by the Imbrium Consortium, vol. 1, Petrology, pp. 7794, Smithsonian Astrophys. Obs., Cambridge, Mass.
  • Ryder, G., and J. F. Bower (1977), Petrology of Apollo 15 black-and-white rocks 15445 and 15455: Fragments of the Imbrium impact melt sheet?, Proc. Lunar Sci. Conf., 8th, 18951923.
  • Ryder, G., and M. D. Norman (1980), Catalog of Apollo 16 Rocks, Publ. 52, JSC 16904, NASA Curatorial Branch, Lyndon B. Johnson Space Cent., Houston, Tex.
  • Ryder, G., and P. Spudis (1987), Chemical composition and origin of Apollo 15 impact melts, Proc. Lunar Planet. Sci. Conf., 17th, Part 2, J. Geophys. Res., 92, suppl., E432E446, doi:10.1029/JB092iB04p0E432.
  • Ryder, G., and J. A. Wood (1977), Serenitatis and Imbrium impact melts: Implications for large-scale layering in the lunar crust, Proc. Lunar Sci. Conf., 8th, 655668.
  • Schmitt, H. H., N. J. Trask, and E. M. Shoemaker (1967), Geologic map of the Copernicus quadrangle of the Moon, U.S. Geol. Surv. Map, I-515(LAC-58), scale 1:1,000,000, U.S. Geol. Surv., Reston, Va.
  • Schultz, P. H., and R. R. Anderson (1996), Asymmetry of the Manson impact structure: Evidence for impact angle and direction, Spec. Pap. Geol. Soc. Am., 302, 397417.
  • Settle, M., M. J. Cintala, and J. W. Head (1979), Emplacement of Fahrenheit crater ejecta at the Luna-24 site, Moon Planets, 20, 281300, doi:10.1007/BF00907580.
  • Shaw, H. R. (1965), Comments on viscosity, crystal settling, and convection in granitic magmas, Am. J. Sci., 263, 120152, doi:10.2475/ajs.263.2.120.
  • Shaw, H. R. (1972), Viscosities of magmatic silicate liquids: An empirical method of prediction, Am. J. Sci., 272, 870893, doi:10.2475/ajs.272.9.870.
  • Shoemaker, E. M. (1960a), Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona, in Report 21st International Geological Congress, Norden, Part XVIII, Structure of the Earth's Crust and Deformation of Rocks, edited by A. Kvale and A. Metzger, pp. 418434, Berlingske Bogtrykkeri, Copenhagen.
  • Shoemaker, E. M. (1960b), Ballistics of the Copernican ray system, Proc. Lunar Planet. Explor. Colloq., 2(2), 721.
  • Shoemaker, E. M. (1962), Interpretation of lunar craters, in Physics and Astronomy of the Moon, edited by Z. Kopal, pp. 283359, Academic Press, New York.
  • Shoemaker, E. M. (1963), Impact mechanics at Meteor Crater, Arizona, in The Moon, Meteorites and Comets, edited by B. M. Middlehurst and G. P. Kuiper, pp. 301336, Univ. Chicago Press, Chicago, Ill.
  • Shoemaker, E. M., R. M. Batson, H. E. Holt, E. C. Morris, J. J. Rennilson, and E. A. Whitaker (1968), Television observations from Surveyor VII, in Surveyor VII Mission Report, Part II: Science Results, Tech. Rep. 32-1264, pp. 976, Jet Propul. Lab., Pasadena, Calif.
  • Simonds, C. H., W. C. Phinney, J. L. Warner, P. E. McGee, J. Geeslin, R. W. Brown, and J. M. Rhodes (1977), Apollo 14 revisited, or breccias aren't so bad after all, Proc. Lunar Sci. Conf., 8th, 18691893.
  • Smith, D. E., et al. (2010), The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter Mission, Space Sci. Rev., 150, 209241, doi:10.1007/s11214-009-9512-y.
  • Smith, P. M., and P. D. Asimow (2005), Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models, Geochem. Geophys. Geosyst., 6, Q02004, doi:10.1029/2004GC000816.
  • Spudis, P. D., P. J. McGovern, and W. S. Kiefer (2011), Large shield volcanoes on the Moon, Lunar Planet. Sci., XLII, Abstract 1367.
  • Stickel, J. J., and R. L. Powell (2005), Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech., 37, 129149, doi:10.1146/annurev.fluid.36.050802.122132.
  • Stöffler, D., N. A. Artemieva, and E. Pierazzo (2002), Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field, Meteorit. Planet. Sci., 37, 18931907, doi:10.1111/j.1945-5100.2002.tb01171.x.
  • Strom, R. G., and G. Fielder (1970), Multiphase eruptions associated with the lunar craters Tycho and Aristarchus, Comm. Lunar Planet. Lab., 8(150), 235288.
  • Wagner, R., M. Robinson, and J. Ashley (2011), Occurrence and morphology of small-scale pit craters in lunar impact melt deposits, paper presented at the 4th annual NASA Lunar Science Forum, NASA Lunar Sci. Inst., NASA Ames Research Cent., Mountain View, Calif., 19–21 July. (Available at http://lunarscience2011.arc.nasa.gov/occurrence-and-morphology-small-scale-pit-craters-lunar-impact-melt-deposits).
  • Wiik, H. B., J. A. Maxwell, and J.-L. Bouvier (1973), Chemical composition of some Apollo 14 lunar samples, Earth Planet. Sci. Lett., 17, 365368, doi:10.1016/0012-821X(73)90201-X.
  • Wilhelms, D. E. (1987), The geologic history of the Moon, U.S. Geol. Surv. Prof. Pap., 1348, 302 pp.
  • Wilhelms, D. E. (1993), To a Rocky Moon, Univ. of Ariz. Press, Tucson.
  • Wilhelms, D. E., and J. F. McCauley (1971), Geologic map of the near side of the Moon, U.S. Geol. Surv. Map, I-703, scale 1:5,000,000, U.S. Geol. Surv., Reston, Va.
  • Williams, D. A., S. A. Fagents, and R. Greeley (2000), A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon, J. Geophys. Res., 105(E8), 20,18920,205, doi:10.1029/1999JE001220.
  • Wilson, L., and J. W. Head (2003), Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement, J. Geophys. Res., 108(E2), 5012, doi:10.1029/2002JE001909.
  • Wilson, L., and P. J. Mouginis-Mark (2001), Estimation of volcanic eruption conditions for a large flank event on Elysium Mons, Mars, J. Geophys. Res., 106(E9), 20,62120,628, doi:10.1029/2000JE001420.
  • Wood, C. A. (1973), Moon: Central peak heights and crater origins, Icarus, 20, 503506, doi:10.1016/0019-1035(73)90023-7.
  • Wood, C. A. (2003), The Modern Moon, Sky Publ. Corp., Cambridge, Mass.
  • Wood, C. A., and L. Andersson (1978), New morphometric data for fresh lunar craters, Proc. Lunar Planet. Sci. Conf., 9th, 36693689.
  • Zanetti, M., H. Hiesinger, C. H. van derBogert, and B. L. Jolliff (2011a), Observation of stratified ejecta blocks at Aristarchus crater, Lunar Planet. Sci., XLII, Abstract 2262.
  • Zanetti, M., H. Hiesinger, C. H. van derBogert, D. Reiss, and B. L. Jolliff (2011b), Aristarchus crater: Mapping of impact melt and absolute age determination, Lunar Planet. Sci., XLII, Abstract 2330.