SEARCH

SEARCH BY CITATION

References

  • Altheide, T. S., V. F. Chevrier, and E. Noe Dobrea (2010), Mineralogical characterization of acid weathered phyllosilicates with implications for secondary Martian deposits, Geochim. Cosmochim. Acta, 74, 62326248, doi:10.1016/j.gca.2010.08.005.
  • Anthony, J. W., R. A. Bideaux, K. W. Bladh, and M. C. Nichols (2003), Handbook of Mineralogy, vol. II, 904 pp., Mineral. Soc. of Am., Washington, D. C.
  • Barnhart, C. J., and F. Nimmo (2011), Role of impact excavation in distributing clays over Noachian surfaces, J. Geophys. Res., 116, E01009, doi:10.1029/2010JE003629.
  • Bibring, J.-P., Y. Langevin, J. F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, and F. Forget (2006), Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400404, doi:10.1126/science.1122659.
  • Bishop, J. L., C. M. Pieters, and R. G. Burns (1993), Reflectance and Mössbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials, Geochim. Cosmochim. Acta, 57, 45834595, doi:10.1016/0016-7037(93)90184-X.
  • Bishop, J. L., et al. (2008a), Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars, Science, 321, 830833, doi:10.1126/science.1159699.
  • Bishop, J. L., M. D. Lane, M. D. Dyar, and A. J. Brown (2008b), Reflectance and emission spectroscopy of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas, Clay Miner., 43, 3554, doi:10.1180/claymin.2008.043.1.03.
  • Bishop, J. L., et al. (2009), Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau, J. Geophys. Res., 114, E00D09, doi:10.1029/2009JE003352.
  • Bishop, J. L., W. P. Gates, H. D. Makarewicz, N. K. McKeown, and T. Hiroi (2011), Reflectance spectroscopy of beidellites and their importance for Mars, Clays Clay Miner., 59, 378399, doi:10.1346/CCMN.2011.0590403.
  • Buczkowski, D., and K. Seelos (2010), Extensive phyllosilicate layer in north-western Noachis Terra: Relationship to phyllosilicates in Holden and Eberswalde?, presented at the 4th MSL Landing site workshop, NASA, Monrovia, Calif., 27–29 September.
  • Buczkowski, D., K. D. Seelos, S. L. Murchie, F. P. Seelos, E. Malaret, C. Hash, and the CRISM team (2010), Extensive Phyllosilicate-bearing Layer Exposed by Valley Systems in Northwest Noachis Terra, Lunar Planet. Sci., XLI, Abstract 1458.
  • Carroll, D. (1970), Clay minerals in Arctic Ocean sea-floor sediments, J. Sediment. Petrol., 40, 814821.
  • Carter, J., F. Poulet, J.-P. Bibring, S. Murchie, Y. Langevin, J. F. Mustard, and B. Gondet (2009), Phyllosilicates and other hydrated minerals on Mars: 1. Global distribution as seen by MEx/OMEGA, Lunar Planet. Sci., XL, Abstract 2028.
  • Chamley, H. (1989), Clay Sedimentology, 623 pp., Springer, New York.
  • Clark, R. N., T. V. V. King, M. Klejwa, G. A. Swayze, and N. Vergo (1990), High spectral resolution reflectance spectroscopy of minerals, J. Geophys. Res., 95, 12,65312,680, doi:10.1029/JB095iB08p12653.
  • Dohm, J. M., K. L. Tanaka, and T. M. Hare (2001), Geologic map of the Thaumasia region of Mars, U.S. Geol. Surv. Misc. Geol. Invest. Map, I-2650, scale 1:5,000,000.
  • Ehlmann, B. L., et al. (2009), Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration, J. Geophys. Res., 114, E00D08, doi:10.1029/2009JE003339.
  • Fielitz, W., and J.-L. Mansy (1999), Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides), Tectonophysics, 309, 227256, doi:10.1016/S0040-1951(99)00141-9.
  • Flahaut, J., C. Quantin, H. Clenet, P. Allemand, J. F. Mustard, and P. Thomas (2012), Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: Insights into early igneous processes on Mars, Icarus, doi:10.1016/j.icarus.2011.12.027, in press.
  • Gaudin, A., E. Dehouck, and N. Mangold (2011), Evidence for weathering on Early Mars from a comparison with terrestrial weathering profiles, Icarus, 216, 257268, doi:10.1016/j.icarus.2011.09.004.
  • Giese, R. F. (1988), Kaolin minerals: Structures and stabilities, in Reviews in Mineralogy, vol. 19, Hydrous Phyllosilicates (Exclusive of Micas), edited by S. W. Bailey, pp. 2962, Mineral. Soc. of Am., Washington, D. C.
  • Glotch, T. D., J. L. Bandfield, L. L. Tornabene, H. B. Jensen, and F. P. Seelos (2010), Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars, Geophys. Res. Lett., 37, L16202, doi:10.1029/2010GL044557.
  • Grant, J. A., D. Buczkowski, R. P. Irwin III, and K. Siebach (2010), A lake in Uzboi Vallis and implications for late Noachian climate on Mars, Lunar Planet. Sci., XLI, Abstract 1834.
  • Gutiérrez, M. (2005), Climatic Geomorphology, Developments in Earth Science Processes, 760 pp., Elsevier, New York.
  • Hahn, B. C., et al. (2007), Mars Odyssey Gamma Ray Spectrometer elemental relative surface age: Implications for Martian crustal evolution, J. Geophys. Res., 112, E03S11, doi:10.1029/2006JE002821.
  • Harvey, R. P., and J. Griswold (2010), Burial, exhumation, metamorphism and other dastardly deeds exposed at the Hesperian/Noachian boundary in the southern Nili Fossae region, Lunar Planet. Sci., XLI, Abstract 2045.
  • Hétier, J. M., N. Yoshinaga, and F. Weber (1977), Formation of clay minerals in andosoils under temperate climates, Clay Miner., 12, 299307, doi:10.1180/claymin.1977.012.4.03.
  • Le Deit, L., J. Flahaut, C. Quantin, and P. Allemand (2010a), Geological setting of different phyllosilicate-rich deposits exposed on the surrounding plateaus and in the walls of Valles Marineris, Mars, Lunar Planet. Sci., XLI, Abstract 1146.
  • Le Deit, L., J. Flahaut, C. Quantin, O. Bourgeois, and E. Hauber (2010b), Geologic analysis of various hydrated formations exposed on the plateaus surrounding Valles Marineris, Mars, Abstract 6032, presented at the First International Conference on Mars Sedimentology and Stratigraphy, Lunar and Planet. Inst., El Paso, Tex., 19–21 April.
  • Le Deit, L., O. Bourgeois, D. Mège, E. Hauber, S. Le Mouélic, M. Massé, R. Jaumann, and J.-P. Bibring (2010c), Geological history of a layered formation covering the plateaus around Valles Marineris, Mars, Icarus, 208, 684703, doi:10.1016/j.icarus.2010.03.012.
  • Loizeau, D., et al. (2007), Phyllosilicates in the Mawrth Vallis region of Mars, J. Geophys. Res., 112, E08S08, doi:10.1029/2006JE002877.
  • Loizeau, D., N. Mangold, F. Poulet, V. Ansan, E. Hauber, J.-P. Bibring, B. Gondet, Y. Langevin, P. Masson, and G. Neukum (2010), Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM, Icarus, 205, 396418, doi:10.1016/j.icarus.2009.04.018.
  • Loizeau, D., J. Carter, S. Bouley, N. Mangold, F. Poulet, J.-P. Bibring, F. Costard, Y. Langevin, B. Gondet, and S. L. Murchie (2012), Characterization of hydrated silicates-bearing outcrops in Tyrrhena Terra, Mars: Implication to the alteration history of Mars, Icarus, in press.
  • Malin, M. C., et al. (2007), Context camera investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E05S04. doi:10.1029/2006JE002808.
  • Marzo, G. A., A. F. Davila, L. L. Tornabende, J. M. Dohm, A. G. Fairén, C. Gross, T. Kneissl, J. L. Bishop, T. L. Roush, and C. P. McKay (2010), Evidence for Hesperian impact-induced hydrothermalism on Mars, Icarus, 208, 667683, doi:10.1016/j.icarus.2010.03.013.
  • McEwen, A. S., et al. (2007), Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res., 112, E05S02, doi:10.1029/2005JE002605.
  • McGuire, P. C., et al. (2009), An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data, Planet. Space Sci., 57, 809815, doi:10.1016/j.pss.2009.03.007.
  • McKeown, N. K., J. L. Bishop, E. Z. Noe Dobrea, B. L. Ehlmann, M. Parente, J. F. Mustard, S. L. Murchie, G. A. Swayze, J.-P. Bibring, and E. A. Silver (2009), Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate, J. Geophys. Res., 114, E00D10, doi:10.1029/2008JE003301.
  • Milliken, R. E. (2007), Clay minerals in water-lain sedimentary deposits in the southern highlands: Evaluating habitability on Mars with MSL, 2nd MSL Landing Site Workshop, NASA, Pasadena, Calif., 23–25 October.
  • Milliken, R. E., et al. (2008), Opaline silica in young deposits on Mars, Geology, 36(11), 847850, doi:10.1130/G24967A.1.
  • Morgan, F., F. Seelos, and S. Murchie (2009), CAT Tutorial, presented at CRISM Workshop held in conjunction with the 40th Lunar and Planetary Science Conference, Lunar and Planet. Inst., Woodlands, Tex., 22 March.
  • Murchie, S., et al. (2007), Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO), J. Geophys. Res., 112, E05S03, doi:10.1029/2006JE002682.
  • Murchie, S. L., et al. (2009a), A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter, J. Geophys. Res., 114, E00D06, doi:10.1029/2009JE003342.
  • Murchie, S. L., et al. (2009b), The compact reconnaissance imaging spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase, J. Geophys. Res., 114, E00D07, doi:10.1029/2009JE003344.
  • Mustard, J. F., et al. (2008), Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument, Nature, 454, 305309, doi:10.1038/nature07097.
  • Naumov, M. V. (2005), Principal features of impact-generated hydrothermal circulation systems: Mineralogical and geochemical evidence, Geofluids, 5, 165184, doi:10.1111/j.1468-8123.2005.00092.x.
  • Neukum, G., and R. Jaumann (2004), HRSC: The high resolution stereo camera of Mars express. In: Mars Express: The Scientific Payload, Eur. Space Agency Spec. Publ., ESA SP-1240, 1735.
  • Noe Dobrea, E. Z., et al. (2010), Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin, J. Geophys. Res., 115, E00D19, doi:10.1029/2009JE003351.
  • Osterloo, M. M., V. E. Hamilton, J. L. Bandfield, T. D. Glotch, A. M. Baldridge, P. R. Christensen, L. L. Tornabene, and F. S. Anderson (2008), Chloride-bearing materials in the southern highlands of Mars, Science, 319, 16511654, doi:10.1126/science.1150690.
  • Osterloo, M. M., F. S. Anderson, V. E. Hamilton, and B. M. Hynek (2010), Geologic context of proposed chloride-bearing materials on Mars, J. Geophys. Res., 115, E10012, doi:10.1029/2010JE003613.
  • Paquet, H. (1970), Évolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées, Mém. Serv. Carte Géol. Alsace-Lorraine, 30, 212 pp.
  • Parente, M. (2008), A new approach to denoising CRISM images, Lunar Planet. Sci., XXXIX, Abstract 2528.
  • Pelkey, S. M., et al. (2007), CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance, J. Geophys. Res., 112, E08S14, doi:10.1029/2006JE002831.
  • Pondrelli, M., A. P. Rossi, L. Marinangeli, E. Hauber, K. Gwinner, A. Baliva, and S. Di Lorenzo (2008), Evolution and depositional environments of the Eberswalde fan delta, Mars, Icarus, 197, 429451, doi:10.1016/j.icarus.2008.05.018.
  • Poulet, F., J.-P. Bibring, J. F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R. E. Arvidson, B. Gondet, and C. Gomez, and the OMEGA Team (2005), Phyllosilicates on Mars and implications for early Martian climate, Nature, 438, 623627, doi:10.1038/nature04274.
  • Poulet, F., J.-P. Bibring, B. Gondet, Y. Langevin, J. Mustard, N. Mangold, V. Chevrier, and A. Gendrin (2007), Discovery, mapping and mineralogy of phyllosilicates on Mars by MEx-OMEGA: A reappraisal, Abstract 3170, presented at the Seventh International Conference on Mars, Lunar and Planet. Inst., Pasadena, Calif., 9–13 July.
  • Quantin, P. (1972), Les andosols: Revue bibliographique des connaissances actuelles, Cah. ORSTOM Sér. Pédol., 10(3), 273301.
  • Quantin, P., D. Badaut-Trauth, and F. Weber (1975), Mise en évidence de minéraux secondaires, argiles et hydroxydes, dans les andosols des Nouvelles-Hébrides, après la déferrification par la méthode de Endredy, Bull. Groupe Fr. Argiles, 27, 5167.
  • Righi, D., and A. Meunier (1995), Origin of clays by rock weathering and soil formation, in Origin and Mineralogy of Clays, edited by B. Velde, pp. 43161, Springer, Berlin.
  • Roach, L. H., J. F. Mustard, G. Swayze, R. E. Milliken, J. L. Bishop, S. L. Murchie, and K. Lichtenberg (2010), Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris, Icarus, 206, 253268, doi:10.1016/j.icarus.2009.09.003.
  • Robinson, D., and R. E. Bevins (1989), Diastathermal (extensional) metamorphism at very low grades and possible high grade analogues, Earth Planet. Sci. Lett., 92, 8188, doi:10.1016/0012-821X(89)90022-8.
  • Schumm, S. A., J.-F. Dumont, and J. K. Holbrook (2002), Active Tectonics and Alluvial Rivers, 292 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Schwenzer, S. P., and D. A. Kring (2009a), Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars, Geology, 37, 10911094, doi:10.1130/G30340A.1.
  • Schwenzer, S. P., and D. A. Kring (2009b), Impact-generated hydrothermal alteration on Mars: Clay minerals, oxides, zeolites and more, Lunar Planet. Sci., XL, Abstract 1421.
  • Scott, D. H., and K. L. Tanaka (1986), Geologic Map of the western equatorial region of Mars, U.S. Geol. Surv. Misc. Geol. Invest. Map, I-1802-A, 1:15M scale.
  • Smith, D. E., et al. (2001), Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106(E10), 23,68923,722, doi:10.1029/2000JE001364.
  • Sonnenfeld, P. (1984), Brines and Evaporates, 631 pp., Academic, San Diego, Calif.
  • Swayze, G. A., R. N. Clark, S. J. Sutley, C. A. Gent, B. W. Rockwell, D. L. Blaney, J. L. Post, and B. P. Farm (2002), Mineral mapping Mauna Kea and Mauna Loa shield volcanos on Hawaii using AVIRIS data and the USGS Tetracorder spectral identification system: Lessons applicable to the search for relict Martian hydrothermal systems, in Proceedings of the 11th JPL Airborne Earth Science Workshop JPL Publ. 03–4, edited by R. O. Green, pp. 373387, Jet Propul. Lab., Pasadena, Calif.
  • Swindale, L. D., and M. L. Jackson (1960), A mineralogical study of soil formation in four rhyolite-derived soils from New Zealand, N.Z. J. Geol. Geophys., 3, 141183, doi:10.1080/00288306.1960.10423590.
  • Thollot, P., N. Mangold, S. Le Mouélic, R. E. Milliken, L. H. Roach, and J. F. Mustard (2010), Recent hydrated minerals in Noctis Labyrinthus Chasmata, Mars, Lunar Planet. Sci., XLI, Abstract 1873.
  • Tosca, N. J., S. M. McLennan, D. H. Lindsley, and M. A. A. Schoonen (2004), Acid–sulfate weathering of synthetic Martian basalt: The acid fog model revisited, J. Geophys. Res., 109, E05003, doi:10.1029/2003JE002218.
  • Velde, B. (1992), Introduction to Clay Minerals, 193 pp., Chapman Hall, London, doi:10.1007/978-94-011-2368-6.
  • Weaver, C. E. (1989), Clays, Muds, and Shales, Developments in Sedimentology, vol. 44, 819 pp., Elsevier, Amsterdam.
  • Weitz, C. M., R. E. Milliken, J. A. Grant, A. S. McEwen, R. M. E. Williams, and J. L. Bishop (2008), Light-toned strata and inverted channels adjacent to Juventae and Ganges chasmata, Mars, Geophys. Res. Lett., 35, L19202, doi:10.1029/2008GL035317.
  • Weitz, C. M., R. E. Milliken, J. A. Grant, A. S. McEwen, R. M. E. Williams, J. L. Bishop, and B. J. Thomson (2010), Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris, Icarus, 205, 73102, doi:10.1016/j.icarus.2009.04.017.
  • Weitz, C. M., J. L. Bishop, P. Thollot, N. Mangold, and L. H. Roach (2011), Diverse mineralogies in two troughs of Noctis Labyrinthus, Mars, Geology, 39(10), 899902, doi:10.1130/G32045.1.
  • Wintzer, A. E., C. C. Allen, and D. Z. Oehler (2011), Phyllosilicate deposits in Shalbatana Vallis, Lunar Planet. Sci., XLII, Abstract 1557.
  • Witbeck, N. E., K. L. Tanaka, and D. H. Scott (1991), Geologic map of the Valles Marineris region, Mars, U.S. Geol. Surv. Misc. Geol. Invest. Map, I-2010.
  • Wray, J. J., B. L. Ehlmann, S. W. Squyres, J. F. Mustard, and R. L. Kirk (2008), Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars, Geophys. Res. Lett., 35, L12202, doi:10.1029/2008GL034385.
  • Wray, J. J., S. L. Murchie, S. W. Squyres, F. P. Seelos, and L. L. Tornabene (2009), Diverse aqueous environments on ancient Mars revealed in the southern highlands, Geology, 37, 10431046, doi:10.1130/G30331A.1.