SEARCH

SEARCH BY CITATION

References

  • Allen, C. (2009) IceBridge MCoRDS L2 Ice Thickness, http://nsidc.org/data/irmcr2.html, Natl. Snow and Ice Data Cent. Boulder, Colo.
  • Alley, R., H. Horgan, I. Joughin, K. Cuffey, T. Dupont, B. Parizek, S. Anandakrishnan, and J. Bassis (2008), A simple law for ice-shelf calving, Science, 322, 1344, doi:10.1126/science.1162543.
  • Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L'Excellent (2001), A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1541.
  • Amestoy, P. R., A. Guermouche, J.-Y. L'Excellent, and S. Pralet (2006), Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136156.
  • Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith (1997), Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, pp. 163202, Birkhäuser, Boston, Mass.
  • Balay, S., K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang (2008), Petsc users manual, Tech. Rep. ANL-95/11, Argonne Natl. Lab., Argonne, Ill.
  • Bamber, J., R. Hardy, and I. Jougin (2000), An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 6774.
  • Bamber, J., R. Layberry, and S. Gogineni (2001), A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33,77333,780.
  • Bassis, J. N. (2011), The statistical physics of iceberg calving and the emergence of universal calving laws, J. Glaciol., 57, 316.
  • Benzi, M., G. Golub, and J. Liesen (2005), Numerical solution of saddle point problems, Acta Numer., 14, 1137.
  • Blatter, H. (1995), Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333344.
  • Box, J., and D. Decker (2010), Analysis of Greenland marine-terminating glacier area changes: 2000–2010, Ann. Glaciol., 52, 9198.
  • Brezzi, F., L. Marini, and E. Suli (2004), Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14, 18931903.
  • Briggs, W., V. Henson, and S. McCormick (2000), A Multigrid Tutorial, 2nd ed., Soc. Ind. Appl. Math., Philadelphia, Pa.
  • Budd, W. F., P. Keage, and N. Blundy (1979), Empirical studies of ice sliding, J. Glaciol., 23, 157170.
  • Burgess, E. W., R. R. Forster, J. E. Box, E. Mosley-Thompson, D. H. Bromwich, R. C. Bales, and L. C. Smith (2010), A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007), J. Geophys. Res., 115, F02004, doi:10.1029/2009JF001293.
  • Courant, R. (1943), Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc., 49, 123.
  • Cuffey, K., and W. S. B. Paterson (2010), The Physics of Glaciers, 4th ed., Elsevier, Burlington, Mass.
  • De Smedt, B., F. Pattyn, and P. De Groen (2010), Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher-order ice-flow models, J. Glaciol., 56, 257261.
  • Donea, J., A. Huerta, J.-P. Ponthot, and A. Rodrìguez-Ferran (2004), Arbitrary Lagrangian-Eulerian methods, in Encyclopedia of Computational Mechanics, chap. 14, pp. 413437, John Wiley, Chichester, U. K.
  • Durand, G., O. Gagliardini, B. deFleurian, T. Zwinger, and E. Le Meur (2009a), Marine ice sheet dynamics: Hysteresis and neutral equilibrium, J. Geophys. Res., 114, F03009, doi:10.1029/2008JF001170.
  • Durand, G., O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh (2009b), Full Stokes modeling of marine ice sheets: Influence of the grid size, Ann. Glaciol., 50, 109114.
  • Ettema, J., M. R. vanden Broeke, E. vanMeijgaard, W. J. van deBerg, J. L. Bamber, J. E. Box, and R. C. Bales (2009), Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110.
  • Fausto, R., A. Ahlstrøm, D. vanAs, S. Johnsen, P. Langen, and S. Konrad (2009), Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland, J. Glaciol., 55, 869878.
  • Frey, P. J. (2001), YAMS, a fully automatic adaptive isotropic surface remeshing procedure, Tech. Rep. RT-0252, Inria, Rocquencourt, France.
  • Gagliardini, O., and T. Zwinger (2008), The ISMIP-HOM benchmark experiments performed using the finite-element code Elmer, Cryosphere, 2, 6776.
  • Gagliardini, O., G. Durand, T. Zwinger, R. C. A. Hindmarsh, and E. Le Meur (2010), Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics, Geophys. Res. Lett., 37, L14501, doi:10.1029/2010GL043334.
  • Glen, J. (1955), The creep of polycrystalline ice, Proc. R. Soc. A, 228, 519538.
  • Goldberg, D. N., and O. V. Sergienko (2011), Data assimilation using a hybrid ice flow model, Cryosphere, 5, 315327.
  • Gresho, P. M., and R. L. Sani (2000a), Incompressible Flow and the Finite Element Method, Volume 1: Advection-diffusion, Wiley, New York.
  • Gresho, P. M., and R. L. Sani (2000b), Incompressible Flow and the Finite Element Method, Volume 2: Isothermal Laminar Flow, Wiley, New York.
  • Greve, R. (2005), Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Ann. Glaciol., 42, 424432.
  • Gropp, W., and E. Lusk (1996), User's Guide for mpich, a Portable Implementation of MPI, Tech. Rep. aNL-96/6, Argonne Natl. Lab., Argonne, Ill.
  • Gropp, W., E. Lusk, N. Doss, and A. Skjellum (1996), A high-performance, portable implementation of the MPI message passing interface standard, Parallel Comput., 22, 789828.
  • Gudmundsson, G. (2003), Transmission of basal variability to a glacier surface, J. Geophys. Res., 108(B5), 2253, doi:10.1029/2002JB002107.
  • Habashi, W., J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M. Vallet (2000), Anisotropic mesh adaptation: Towards user-independent, mesh-independent, and solver-independent CFD. Part I: General principles, Int. J. Numer. Meth. Eng., 32, 725744.
  • Hecht, F. (2006), BAMG: Bi-dimensional anisotropic mesh generator, technical report, Inria, St. Ismier, France.
  • Hindmarsh, R. (2004), A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling, J. Geophys. Res., 109, F01012, doi:10.1029/2003JF000065.
  • Hindmarsh, R., and A. Payne (1996), Titne-step limits for stable solutions of the ice-sheet equation, Ann. Glaciol., 23, 7485.
  • Holland, D., and A. Jenkins (1999), Modeling thermodynamic ice-ocean interactions at the base of an ice shelf, J. Phys. Oceanogr., 29, 17871800.
  • Hughes, T., W. Liu, and T. Zimmermann (1981), Lagrangian-Eulerian finite-element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29, 329349.
  • Hutter, K. (1982), Dynamics of glaciers and large ice masses, Ann. Rev. Fluid Mech., 14, 87130.
  • Hutter, K. (1983), Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets, D. Reidel, Dordrecht, Netherlands.
  • Huybrechts, P., A. Payne, and the EISMINT Intercomparison Group (1996), The EISMINT benchmarks for testing ice-sheet models, Ann. Glaciol., 23, 114.
  • Huybrechts, P., J. Gregory, I. Janssens, and M. Wild (2003), Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations, Global Planet. Change, 42, 83105.
  • International Panel on Climate Change (IPCC) (2007), Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by R. K. Pachauri et al., Geneva, Switzerland.
  • Jay-Allemand, M., F. Gillet-Chaulet, O. Gagliardini, and M. Nodet (2011), Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge, Cryosphere, 5, 659672.
  • Johnson, C., U. Navert, and J. Pitkaranta (1984), Finite-element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., 45, 285312.
  • Johnson, J. (2002), A basal water model for ice sheets, PhD thesis, Univ. of Maine, Orono, Maine.
  • Joughin, I., B. Smith, I. Howat, T. Scambos, and T. Moon (2010), Greenland flow variability from ice-sheet-wide velocity mapping, J. Glaciol., 56, 416430.
  • Karypis, G., and V. Kumar (1998), A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Univ. of Minnesota, Minneapolis.
  • Kernighan, B. W. (1988), The C Programming Language, 2nd ed., Prentice Hall, Englewood Cliffs, N. J.
  • Khazendar, A., E. Rignot, and E. Larour (2007), Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method, Geophys. Res. Lett., 34, L19503, doi:10.1029/2007GL030980.
  • Khazendar, A., E. Rignot, and E. Larour (2009), Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancomb-Wills Ice Shelf, J. Geophys. Res., 114, F04007, doi:10.1029/2008JF001124.
  • Larour, E., E. Rignot, I. Joughin, and D. Aubry (2005), Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method, Geophys. Res. Lett., 32, L05503, doi:10.1029/2004GL021693.
  • Le Brocq, A., A. Payne, M. Siegert, and R. Alley (2009), A subglacial water-flow model for west Antarctica, J. Glaciol., 55(193), 879888.
  • Leng, W., L. Ju, M. Gunzburger, T. Ringler, and S. Price (2010), A parallel high-order accurate finite element nonlinear Stokes ice-sheet model and benchmark experiments, J. Geophys. Res., 117, F01001, doi:10.1029/2011JF001962.
  • Lestringant, R. (1994), A two-dimensional finite-element study of flow in the transition zone between an ice sheet and an ice shelf, Ann. Glaciol., 20, 6772.
  • MacAyeal, D. (1989), Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream-B, Antarctica, J. Geophys. Res., 94, 40714087.
  • MacAyeal, D. (1992), The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595603.
  • MacAyeal, D. (1993), A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39, 9198.
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 57535766.
  • Morland, L., and R. Zainuddin (1987), Plane and radial ice-shelf flow with prescribed temperature profile, in Dynamics of the West Antarctica Ice Sheet: Proceedings of a Workshop Held in Utrecht, May 6–8, 1985, edited by C. J. van derVeen and J. Oerlemans, pp. 117140, D. Reidel, Dordrecht, Netherlands.
  • Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2010), Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502, doi:10.1029/2010GL043853.
  • Morlighem, M., E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry (2011), A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19503, doi:10.1029/2011GL048659.
  • Narayanan, S. H. K., B. Norris, and B. Winnicka (2010), ADIC2: Development of a component source transformation system for differentiating C and C++, Procedia Comp. Sci., 1, 18451853.
  • Nethercote, N., and J. Seward (2007), Valgrind: A framework for heavyweight dynamic binary instrumentation, in Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 89100, ACM Press, New York.
  • Nowicki, S. M. J. (2007), Modelling the transition zone of marine ice sheets, PhD thesis, Univ. Coll. London, London.
  • Nowicki, S. M. J., and D. J. Wingham (2008), Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci. Lett., 265, 246255.
  • Paterson, W. (1994), The Physics of Glaciers, 3rd ed., Pergamon Press, New York.
  • Pattyn, F. (1996), Numerical modelling of a fast-flowing outlet glacier: Experiments with different basal conditions, Ann. Glaciol., 23, 237246.
  • Pattyn, F. (2003), A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108(B8), 2382, doi:10.1029/2002JB002329.
  • Pattyn, F., et al. (2008), Benchmark experiments for higher-order and full-stokes ice sheet models (ISMIP-HOM), Cryosphere, 2, 95108.
  • Payne, A., and D. Baldwin (2000), Analysis of ice-flow instabilities identified in the EISMINT inter-comparison exercise, Ann. Glaciol., 30, 204210.
  • Payne, A., et al. (2000), Results from the EISMINT model intercomparison: The effects of thermomechanical coupling, J. Glaciol., 46, 227238.
  • Pilato, C. M., B. Collins-Sussman, and B. W. Fitzpatrick (2008), Version Control With Subversion, 2nd ed., O'Reilly Media, Sebastopol, Calif.
  • Pollard, D., and R. DeConto (2009), Modelling West Antarctica ice sheet growth and collapse through the past five million years, Nature, 458, 329332.
  • Reist, A. (2005), Mathematical analysis and numerical simulation of the motion of a glacier, PhD thesis, Ecole Polytech. Féd. de Lausanne, Lausanne, Switzerland.
  • Rignot, E. (2008), Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data, Geophys. Res. Lett., 35, L12505, doi:10.1029/2008GL033365.
  • Rignot, E., J. Mouginot, and B. Scheuchl (2011), Ice flow of the Antarctic Ice Sheet, Science, 333, 14271430.
  • Ritz, C., A. Fabre, and A. Letreguilly (1997), Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last climatic cycle, Clim. Dyn., 13, 1124.
  • Rommelaere, V., and D. MacAyeal (1997), Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method, Ann. Glaciol., 24, 4348.
  • Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856869.
  • Schoof, C. (2007a), Marine ice-sheet dynamics. Part 1. The case of rapid sliding, J. Fluid Mech., 573, 2755.
  • Schoof, C. (2007b), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.
  • Schoof, C., and R. Hindmarsh (2010), Thin-film flows with wall slip: An asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 73114.
  • Seroussi, H., M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. S. Kristensen (2011), Ice flux divergence anomalies on 79north Glacier, Greenland, Geophys. Res. Lett., 38, L09501, doi:10.1029/2011GL047338.
  • Shapiro, N., and M. Ritzwoller (2004), Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica, Earth Planet. Sci. Lett., 223, 213224.
  • Shewchuk, J. R. (1996), Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, in Applied Computational Geometry: Towards Geometric Engineering, Lect. Notes Comp. Sci., vol. 1148, edited by M. C. Lin and D. Manocha, pp. 203222, Springer, New York.
  • Shewchuk, J. R. (2001), Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry, 22, 13.
  • Stroustrup, B. (1997), The C++ Programming Language, 3rd ed., Addison-Wesley, Reading, Mass.
  • Truffer, M. (2004), The basal speed of valley glaciers: An inverse approach, J. Glaciol., 50, 236242.
  • Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch (2008), OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Trans. Math. Softw., 34, 136, doi:10.1145/1377596.1377598.
  • van derVeen, C. J., and I. M. Whillans (1989), Force budget: I. Theory and numerical methods, J. Glaciol., 35, 5360.
  • Vaughan, G. V., B. Elliston, T. Tromey, and I. L. Taylor (2000), GNU Autoconf, Automake, and Libtool, New Riders, Indianapolis, Indiana.
  • Vieli, A., A. J. Payne, Z. Du, and A. Shepherd (2006), Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic peninsula, Philos. Trans R. Soc. A, 364, 18151839.
  • Vogel, C. R. (2002), Computational Methods for Inverse Problems, Soc. Ind. Appl. Math., Philadelphia, Pa.
  • Walter, F., S. O'Neel, D. McNamara, W. T. Pfeffer, J. N. Bassis, and H. A. Fricker (2010), Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska, Geophys. Res. Lett., 37, L15501, doi:10.1029/2010GL043201.
  • Weertman, J. (1957), On the sliding of glaciers, J. Glaciol., 3, 3338.
  • Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007), A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 2937.