SEARCH

SEARCH BY CITATION

References

  • Benda, L. (1990), The influence of debris flows on channels and valley floors in the Oregon Coast Range, U.S.A., Earth Surf. Processes Landforms, 15(5), 457466.
  • Berger, C., B. McArdell, B. Fritschi, and F. Schlunegger (2010), A novel method for measuring the timing of bed erosion during debris flows and floods, Water Resour. Res., 46, W02502, doi:10.1029/2009WR007993.
  • Berger, C., B. McArdell, and F. Schlunegger (2011), Direct measurement of channel erosion by debris flows, Illgraben, Switzerland, J. Geophys. Res., 116, F01002, doi:10.1029/2010JF001722.
  • Berti, M., R. Genevois, A. Simoni, and P. R. Tecca (1999), Field observations of a debris flow event in the Dolomites, Geomorphology, 29(3–4), 265274.
  • Biot, M. A. (1956), Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Am., 28(2), 168178.
  • Bouchut, F., E. Fernández-Nieto, A. Mangeney, and P. Lagrée (2008), On new erosion models of Savage–Hutter type for avalanches, Acta Mech., 199(1), 181208.
  • Bovis, M., and B. Dagg (1992), Debris flow triggering by impulsive loading: Mechanical modelling and case studies, Can. Geotech. J, 29, 345352.
  • Breien, H., F. V. De Blasio, A. Elverhøi, and K. Høeg (2008), Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway, Landslides, 5(3), 271280.
  • Brufau, P., P. Garcia-Navarro, P. Ghilardi, L. Natale, and F. Savi (2000), 1D mathematical modelling of debris flow, J. Hydraul. Res., 38(6), 435446.
  • Cannon, S. H., and S. L. Reneau (2000), Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico, Earth Surf. Processes Landforms, 25(10), 11031121.
  • Cannon, S. H., R. M. Kirkham, and M. Parise (2001), Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado, Geomorphology, 39(3–4), 171188.
  • Carslaw, H., and J. Jaeger (1959), Conduction of Heat in Solids, pp. , 264, Oxford Univ. Press, Oxford, U. K.
  • Coe, J. A., D. A. Kinner, and J. W. Godt (2008), Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96(3–4), 270297.
  • Coe, J. A., J. W. Kean, S. W. McCoy, D. M. Staley, and T. A. Wasklewicz (2010), Chalk Creek Valley: Colorado's natural debris-flow laboratory, in Geol. Soc. Am. Field Guides, 18, 95117.
  • Costa, J. E. (1984), Physical geomorphology of debris flows, in Developments and Applications of Geomorphology, edited by J. E. Costa and P. J. Fleisher, pp. 268317, Springer, New York.
  • Dietrich, W. E., and T. Dunne (1978), Sediment budget for a small catchment in mountainous terrain, Z. Geomorphol., 29, 191206.
  • Egashira, S., N. Honda, and T. Itoh (2001), Experimental study on the entrainment of bed material into debris flow, Phys. Chem. Earth, Part C, 26(9), 645650.
  • Fagents, S., and S. Baloga (2006), Toward a model for the bulking and debulking of lahars, J. Geophys. Res., 111, B10201, doi:10.1029/2005JB003986.
  • Fannin, R. J., and M. P. Wise (2001), An empirical-statistical model for debris flow travel distance, Can. Geotech. J., 38(5), 982994.
  • Freeze, R., and J. Cherry (1979), Groundwater, 604 pp., Prentice-Hall, Englewood Cliffs, N. J.
  • Gabet, E. J. (2003), Sediment transport by dry ravel, J. Geophys. Res., 108(B1), 2049, doi:10.1029/2001JB001686.
  • Gallino, G. L., and T. C. Pierson (1984), The 1980 Polallie Creek debris flow and subsequent dam-break flood, East Fork Hood River Basin, Oregon, U.S. Geol. Surv. Open File Rep., 84–578, 37 pp.
  • Gartner, J. E., S. H. Cannon, P. M. Santi, and V. G. Dewolfe (2008), Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S., Geomorphology, 96(3–4), 339354.
  • Godt, J. W., and J. A. Coe (2007), Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado, Geomorphology, 84(1–2), 8097.
  • Guthrie, R. H., A. Hockin, L. Colquhoun, T. Nagy, S. G. Evans, and C. Ayles (2010), An examination of controls on debris flow mobility: Evidence from coastal British Columbia, Geomorphology, 114(4), 601613.
  • Hungr, O. (2000), Analysis of debris flow surges using the theory of uniformly progressive flow, Earth Surf. Processes Landforms, 25(5), 483495.
  • Hungr, O., G. C. Morgan, and R. Kellerhals (1984), Quantitative analysis of debris torrent hazards for design of remedial measures, Can. Geotech. J., 21(4), 663677.
  • Hungr, O., S. Evans, M. Bovis, and J. Hutchinson (2001), A review of the classification of landslides of the flow type, Environ. Eng. Geosci., 7(3), 221.
  • Hungr, O., S. McDougall, and M. Bovis (2005), Entrainment of material by debris flows, in Debris-Flow Hazards and Related Phenomena, edited by M. Jakob and O. Hungr, pp. 135158, Springer, New York.
  • Hutchinson, J., and R. Bhandari (1971), Undrained loading, a fundamental mechanism of mudflows and other mass movements, Geotechnique, 21(4), 353358.
  • Iverson, R. M. (1993), Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium, Math. Geol., 25(8), 10271048.
  • Iverson, R. M. (1997), The physics of debris flows, Rev. Geophys., 35(3), 245296, doi:10.1029/97RG00426.
  • Iverson, R. M. (2012), Elementary theory of bed-sediment entrainment by debris flows and avalanches, J. Geophys. Res., 117, F03006, doi:10.1029/2011JF002189.
  • Iverson, R. M., and R. G. LaHusen (1989), Dynamic pore-pressure fluctuations in rapidly shearing granular materials, Science, 246(4931), 796799.
  • Iverson, R. M., M. E. Reid, and R. G. LaHusen (1997), Debris-flow mobilization from landslides, Annu. Rev. Earth Planet. Sci., 25(1), 85138, doi:10.1146/annurev.earth.25.1.85.
  • Iverson, R. M., S. P. Schilling, and J. W. Vallance (1998), Objective delineation of lahar-inundation hazard zones, Geol. Soc. Am. Bull., 110(8), 972984.
  • Iverson, R. M., M. E. Reid, N. R. Iverson, R. G. LaHusen, M. Logan, J. E. Mann, and D. L. Brien (2000), Acute sensitivity of landslide rates to initial soil porosity, Science, 290(5491), 513.
  • Iverson, R. M., M. Logan, R. G. LaHusen, and M. Berti (2010), The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, F03005, doi:10.1029/2009JF001514.
  • Iverson, R. M., M. E. Reid, M. Logan, R. G. Lahusen, J. W. Godt, and J. P. Griswold (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nat. Geosci., 4, 116121.
  • Kean, J. W., D. M. Staley, and S. H. Cannon (2011), In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions, J. Geophys. Res., 116, F04019, doi:10.1029/2011JF002005.
  • Kizito, F., C. Campbell, G. Campbell, D. Cobos, B. Teare, B. Carter, and J. Hopmans (2008), Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor, J. Hydrol., 352(3), 367378.
  • Lambe, T., and R. Whitman (1979), Soil Mechanics, Wiley, New York.
  • Major, J. J. (2000), Gravity-driven consolidation of granular slurries: Implications for debris-flow deposition and deposit characteristics, J. Sediment. Res., 70(1), 6483.
  • Major, J. J., R. M. Iverson, D. F. McTigue, S. Macias, and B. K. Fiedorowicz (1997), Geotechnical properties of debris-flow sediments and slurries, in Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by C. L. Chen, pp. 249259, Am. Soc. Civ. Eng., New York.
  • Mangeney, A., O. Roche, O. Hungr, N. Mangold, G. Faccanoni, and A. Lucas (2010), Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res., 115, F03040, doi:10.1029/2009JF001462.
  • May, C. L. (2002), Debris flows through different forest age classes in the Central Oregon Coast Range, J. Am. Water Resour. Assoc., 38(4), 10971113.
  • McCoy, S. W., J. W. Kean, J. A. Coe, D. M. Staley, T. A. Wasklewicz, and G. E. Tucker (2010), Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning, Geology, 38(8), 735738.
  • McCoy, S. W., J. A. Coe, J. W. Kean, G. E. Tucker, D. M. Staley, and T. A. Wasklewicz (2011), Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 1, In situ measurements of flow dynamics, tracer particle movement and video imagery from the summer of 2009, Ital. J. Eng. Geol. Environ., 1(11), 6575.
  • Meyer, G. A., and S. G. Wells (1997), Fire-related sedimentation events on alluvial fans, Yellowstone National Park, USA, J. Sediment. Res., 67(5), 776791.
  • Miller, M. G. (1999), Active breaching of a geometric segment boundary in the Sawatch Range normal fault, Colorado, USA, J. Struct. Geol., 21(7), 769776.
  • Papa, M., S. Egashira, and T. Itoh (2004), Critical conditions of bed sediment entrainment due to debris flow, Nat. Hazards Earth Syst. Sci., 4(3), 469474.
  • Pierson, T. C. (1980), Erosion and deposition by debris flows at Mt. Thomas, north Canterbury, New Zealand, Earth Surf. Processes Landforms, 5(3), 227247.
  • Pierson, T. C. (1986), Flow behavior in channelized debris flows, Mount St. Helens, Washington, in Hillslope Processes, edited by A. D. Abrahams, pp. 269296, Allen and Unwin, Boston, Mass.
  • Pierson, T. C. (2005), Hyperconcentrated flow: Transitional process between water flow and debris flow, in Debris-Flow Hazards and Related Phenomena, edited by M. Jakob and O. Hungr, pp. 159202, Springer, New York.
  • Pierson, T. C., R. J. Jandra, J. C. Thouret, and C. A. Borrero (1990), Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado-Del-Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars, J. Volcanol. Geotherm. Res., 41(1–4), 1766.
  • Procter, J., S. J. Cronin, I. C. Fuller, G. Lube, and V. Manville (2010), Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand, Geology, 38(1), 6770.
  • Reid, M. E., R. M. Iverson, M. Logan, R. G. LaHusen, J. W. Godt, and J. P. Griswold (2011), Entrainment of bed sediment by debris flows: Results from large-scale experiments, in Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, edited by R. Genevois, D. Hamilton, and A. Prestininzi, pp. 367374, Casa Editrice Univ. La Sapienza, Rome.
  • Revellino, P., O. Hungr, F. M. Guadagno, and S. G. Evans (2004), Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy, Environ. Geol., 45(3), 295311.
  • Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys., 14(2), 227241, doi:10.1029/RG014i002p00227.
  • Rickenmann, D. (1999), Empirical relationships for debris flows, Nat. Hazards, 19(1), 4777.
  • Rickenmann, D. (2005), Runout prediction methods, in Debris-Flow Hazards and Related Phenomena, edited by M. Jakob and O. Hungr, pp. 236238, Springer, New York.
  • Rickenmann, D., D. Weber, and B. Stepanov (2003), Erosion by debris flows in field and laboratory experiments, in Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, edited by D. Rickenmann and R. C. Chen, pp. 883894, Millpress, Rotterdam, Netherlands.
  • Santi, P. M., V. G. deWolfe, J. D. Higgins, S. H. Cannon, and J. E. Gartner (2008), Sources of debris flow material in burned areas, Geomorphology, 96(3–4), 310321.
  • Sassa, K. (1984), The mechanism starting liquefied landslides and debris flows, in Proceedings of 4th International Symposium on Landslides, pp. 349354, Int. Symp. Landslides, Toronto, Canada.
  • Sassa, K., and G. Wang (2005), Mechanism of landslide-triggered debris flows: Liquefaction phenomena due to the undrained loading of torrent deposits, in Debris-Flow Hazards and Related Phenomena, edited by M. Jakob and O. Hungr, pp. 81104, Springer, New York.
  • Scott, K. M., J. W. Vallance, N. Kerle, J. L. Macias, W. Strauch, and G. Devoli (2005), Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: Occurrence, bulking and transformation, Earth Surf. Processes Landforms, 30(1), 5979, doi:10.1002/esp.1127.
  • Smith, S. W. (1997), The Scientist and Engineer's Guide to Digital Signal Processing, Calif. Tech. Publ., San Diego, Calif.
  • Suwa, H., and S. Okuda (1980), Dissection of valleys by debris flow, Z. Geomorphol., 35, 164182.
  • Takahashi, T. (1978), Mechanical characteristics of debris flow, J. Hydraul. Div., 104(8), 11531169.
  • Takahashi, T. (2007), Debris Flow: Mechanics, Prediction and Countermeasures, Taylor and Frances, New York.
  • Takahashi, T., H. Nakagawa, T. Harada, and Y. Yamashiki (1992), Routing debris flows with particle segregation, J. Hydraul. Eng., 118, 14901507.
  • Torquato, S. (1991), Random heterogeneous media: Microstructure and improved bounds on effective properties, Appl. Mech. Rev., 44, 3776.
  • Vallance, J. W., and K. M. Scott (1997), The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow, Geol. Soc. Am. Bull., 109(2), 143163.
  • Wang, G., K. Sassa, and H. Fukuoka (2003), Downslope volume enlargement of a debris slide-debris flow in the 1999 Hiroshima, Japan, rainstorm, Eng. Geol., 69(3–4), 309330.