SEARCH

SEARCH BY CITATION

References

  • Bear, J., and M. Y. Corapcioglu (1981), Mathematical model for regional land subsidence due to pumping: 1. Integrated aquifer subsidence equations based on vertical displacement only, Water Resour. Res., 12, 937946.
  • Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155164.
  • Biot, M. A. (1962), Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 14821498.
  • Booker, J. R., and J. P. Carter (1986), Analysis of a point sink embedded in a porous elastic half space, Int. J. Numer. Anal. Methods Geomech., 10, 137150.
  • Booker, J. R., and J. P. Carter (1987), Elastic consolidation around a point sink embedded in a half-space with anisotropic permeability, Int. J. Numer. Anal. Methods Geomech., 11, 6177.
  • Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 520pp., Oxford Univ. Press, New York.
  • Chen, G. J. (2003), Analysis of pumping in multilayered and poroelastic half space, Comput. Geotech., 30, 126.
  • Dyke, L. D., and W. Sladen (2010), Permafrost and peatland evolution in the Northern Hudson Bay Lowland, Manitoba, Arctic, 63(1), 429441.
  • Fowler, A. C., and C. G. Noon (1999), Mathematical models of compaction, Geophys. J. Int., 136(1), 251260.
  • Frampton, A., S. Painter, S. W. Lyon, and G. Destouni (2011), Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change, J. Hydrol., 403, 352359.
  • Gebhardt, S., H. Fleige, and R. Horn (2010), Shrinkage processes of a drained riparian peatland with subsidence morphology, J. Soils Sediments, 10, 484493, doi:10.1007/s11368-009-0130-9.
  • Gibson, R. E., G. I. England, and M. J. L. Hussey (1967), The theory of one-dimensional consolidation of saturated clays, Geotechnique, 17, 261273.
  • Gimenez, D., E. Perfect, W. J. Rawls, and Y. Pachepsky (1997), Fractal models for predicting soil hydraulic properties: A review, Eng. Geol., 48, 161183.
  • Gronlund, A., A. Hauge, A. Hovde, and D. P. Rasse (2008), Carbon loss estimates from cultivated peat soils in Norway: A comparison of three methods, Nutr. Cycling Agroecosyst., 81, 157167.
  • Hansson, K., J. Simunek, M. Mizoguchi, L.-C. Lundin, and M. T. vanGenuchten (2004), Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications, Vadose Zone J., 3, 693704.
  • Kanok-Nukulchai, W., and K. T. Chau (1990), Point sink fundamental solutions for subsidence predictions, J. Eng. Mech. Div., 116, 11761182.
  • Lamoreaux, P., and J. Newton (1986), Catastrophic subsidence: an environmental hazard, Shelby county, Alabama, Environ. Geol. Water Sci., 8, 2540.
  • Leifeld, J., M. Muller, and J. Fuhrer (2011), Peatland subsidence and carbon loss from drained temperate fens, Soil Use Manage., 27, 170176.
  • Mackay, J. R. (1999), Periglacial features developed on the exposed lake bottoms of seven lakes that drained rapidly after 1950, Tuktoyaktuk Peninsula area, western Arctic coast, Canada, Permafrost Periglacial Processes, 10, 3963.
  • McKenzie, J. M., C. I. Voss, and D. I. Siegel (2007), Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs, Adv. Water Resour., 30, 966983.
  • Mesri, G., and M. Ajlouni (2007), Engineering properties of fibrous peats, J. Geotech. Geoenviron. Eng., 133, 850866.
  • Morgenstern, N., and J. Nixon (1971), One-dimensional consolidation of thawing soils, Can. Geotech. J., 8, 558565.
  • Nicolsky, D., V. Romanovsky, G. Tipenko, and D. Walker (2008), Modeling biogeophysical interactions in nonsorted circles in the low Arctic, J. Geophys. Res., 113, G03S05, doi:10.1029/2007JG000565.
  • Painter, S. (2011), Three-phase numerical model of water migration in partially frozen geological media: Model formulation, validation, and applications, Comput. Geosci., 15, 6985, doi:10.1007/s10596-0109197-z.
  • Parent, L., and P. Ilnicki (2003), Organic Soils and Peat Materials for Sustainable Agriculture, 205 pp., CRC Pres, Boca Raton, Fla.
  • Pollard, W. H., and H. M. French (1980), A first approximation of the volume of ground ice, Richards Island, Pleistocene Mackenzie delta, Northwest Territories, Canada, Can. Geotech. J., 17, 509516.
  • Qi, J., P. A. Vermeer, and G. Cheng (2006), A review of the influence of freeze-thaw cycles on soil geotechnical properties, Permafrost Periglacial Processes, 17, 245252.
  • Romanovsky, V., T. Osterkamp, and N. Duxbury (1997), An evaluation of three numerical models used in simulations of the active layer and permafrost temperatures regimes, Cold Reg. Sci. Technol., 26, 195203.
  • Rowland, J., B. Travis, and C. Wilson (2011), The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost, Geophys. Res. Lett., 38, L17504, doi:10.1029/2011GL048497.
  • Sannel, A. B. K., and P. Kuhry (2011), Warming-induced destabilization of peat plateau/thermokarst lake complexes, J. Geophys. Res., 116, G03035, doi:10.1029/2010JG001635.
  • Tarn, J. Q., and C. C. Lu (1991), Analysis of subsidence due to a point sink in an anisotropic porous elastic half space, Int. J. Numer. Anal. Methods Geomech., 15, 573592.
  • Terzaghi, K. (1943), Theoretical Soil Mechanics, 528 pp., John Wiley, New York.
  • Thomas, H., P. Cleall, Y. Li, C. Harris, and M. Kern-Luetsch (2009), Modelling of cryogenic processes in permafrost and seasonally frozen soils, Geotechnique, 59, 173184, doi:10.1680/geot.2009.59.3.173.
  • Williams, P., and M. Smith (1989), The frozen Earth: Fundamentals of Geocryology, 306 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Wong, L. S., R. Hashim, and F. H. Hali (2009), A review on hydraulic conductivity and compressibility of peat, J. Appl. Sci., 9, 32073218.
  • Wright, N., W. L. Quinton, and M. Hayashi (2008), Hillslope runoff from an ice-cored peat plateau in a discontinuous permafrost basin, Northwest Territories, Canada, Hydrol. Processes, 22, 28162828.
  • Xu, P., and B. Yu (2008), Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry, Adv. Water Resour., 31, 7481.
  • Zyvoloski, G. (2007), Fehm: A control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer, Los Alamos Natl. Lab. Rep., LAUR-07-3359, 45 pp.