SEARCH

SEARCH BY CITATION

References

  • Bahr, D. B., M. F. Meier, and S. D. Peckham (1997), The physical basis of glacier volume-area scaling, J. Geophys. Res., 102(B9), 20,35520,362, doi:10.1029/97JB01696.
  • Bauder, A., M. Funk, and G. H. Gudmundsson (2003), The ice-thickness distribution of Unteraargletscher, Switzerland, Ann. Glaciol., 37, 331336.
  • Benn, D. I., C. R. Warren, and R. H. Mottram (2007), Calving processes and the dynamics of calving glaciers, Earth Sci. Rev., 82(3–4), 143179, doi:10.1016/j.earscirev.2007.02.002.
  • Binder, D., E. Brückl, K. Roch, M. Behm, W. Schöner, and B. Hynek (2009), Determination of total ice volume and ice-thickness distribution of two glaciers in the Hohe Tauern region, Eastern Alps, from GPR data, Ann. Glaciol., 50, 7179.
  • Chen, J., and A. Ohmura (1990), Estimation of Alpine glacier water resources and their change since the 1870s, IAHS AISH Publ., 193, 127135.
  • Clarke, G. K. C., E. Berthier, C. G. Schoof, and A. H. Jarosch (2009), Neural networks applied to estimating subglacial topography and glacier volume, J. Clim., 22, 21462160, doi:10.1175/2008JCLI2572.1.
  • Driedger, C., and P. Kennard (1986), Glacier volume estimation on Cascade volcanos: An analysis and comparison with other methods, Ann. Glaciol., 8, 5964.
  • ESRI (2008), ArcGIS Desktop: Release 9.3, Environ. Syst. Res. Inst., Redlands, Calif.
  • Etzelmüller, B., and H. Björnsson (2000), Map analysis techniques for glaciological applications, Int. J. Geogr. Inf. Sci., 14(6), 567581, doi:10.1080/136588100415747.
  • Farinotti, D. (2010), Simple methods for inferring glacier-thickness and snow accumulation distribution, PhD thesis, Lab. of Hydraulics, Hydrol. and Glaciol. (VAW), ETH-Zurich, Zurich, Switzerland.
  • Farinotti, D., M. Huss, A. Bauder, and M. Funk (2009a), An estimate of the glacier ice volume in the Swiss Alps, Global Planet. Change, 68(3), 225231, doi:10.1016/j.gloplacha.2009.05.004.
  • Farinotti, D., M. Huss, A. Bauder, M. Funk, and M. Truffer (2009b), A method to estimate the ice volume and ice-thickness distribution of alpine glaciers, J. Glaciol., 55, 422430.
  • Fischer, A. (2009), Calculation of glacier volume from sparse ice-thickness data, applied to Schaufelferner, Austria, J. Glaciol., 55, 453460.
  • Frey, H., W. Haeberli, A. Linsbauer, C. Huggel, and F. Paul (2010), A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials, Nat. Hazards Earth Syst. Sci., 10(2), 339352.
  • Haeberli, W., and W. Fisch (1984), Electrical resistivitiy soundings of glacier beds: A test study on Grubengletscher, Wallis, Swiss Alps, J. Glaciol., 30, 373376.
  • Haeberli, W., and M. Hoelzle (1995), Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps, Ann. Glaciol., 21, 206212.
  • Haeberli, W., and J. Schweizer (1988), Rhonegletscher 1850: Eismechanische Überlegungen zu einem historischen Gletscherstand, Mitt. VAW/ETHZ, 94, 5970.
  • Hoelzle, M., T. Chinn, D. Stumm, F. Paul, M. Zemp, and W. Haeberli (2007), The application of glacier inventory data for estimating past climate change effects on mountain glaciers: A comparison between the European Alps and the Southern Alps of New Zealand, Global Planet. Change, 56(1–2), 6982, doi:10.1016/j.gloplacha.2006.07.001.
  • Huss, M. (2012), Extrapolating glacier mass balance to the mountain range scale: The European Alps 1900–2100, Cryosphere Discuss., 6(2), 11171156, doi:10.5194/tcd-6-1117-2012.
  • Huss, M., G. Jouvet, D. Farinotti, and A. Bauder (2010), Future high-mountain hydrology: A new parameterization of glacier retreat, Hydrol. Earth Syst. Sci., 14(5), 815829.
  • Hutchinson, M. (1989), A new procedure for gridding elevation and stream line data with automatic removal of spurious pits, J. Hydrol., 106, 211232, doi:10.1016/0022-1694(89)90073-5.
  • Jouvet, G., M. Huss, H. Blatter, M. Picasso, and J. Rappaz (2009), Numerical simulation of Rhonegletscher from 1874 to 2100, J. Comput. Phys., 228(17), 64266439, doi:10.1016/j.jcp.2009.05.033.
  • Jouvet, G., M. Huss, M. Funk, and H. Blatter (2011), Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate, J. Glaciol., 57(206), 10331045.
  • Kääb, A., and W. Haeberli (2001), Evolution of a high-mountain thermokarst lake in the Swiss Alps, Arct. Antarct. Alp. Res., 33(4), 385390.
  • Kamb, B., and K. A. Echelmeyer (1986), Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32(111), 267284.
  • Kirkbride, M. P., and C. R. Warren (1999), Tasman glacier, New Zealand: 20th-century thinning and predicted calving retreat, Global Planet. Change, 22(1–4), 1128, doi:10.1016/S0921-8181(99)00021-1.
  • Künzler, M., C. Huggel, A. Linsbauer, and W. Haeberli (2010), Emerging risks related to new lakes in deglaciating areas of the Alps, in Mountain Risks: Bringing Science to Society. Proceedings of the “Mountain Risk” International Conference, 24–26 November 2010, Firenze, Italy, edited by J.-P. Malet, T. Glade, and N. Casagli, pp. 453458, CERG Editions, Strasbourg, France.
  • Laboratory of Hydraulics, Hydrology and Glaciology (VAW) (1998), Mauvoisin, Giétrogletscher, Corbassièregletscher, Glaziologische Studie im Zusammenhang mit den Stauanlagen Mauvoisin, Tech. rep. 55.05.7903, Lab. of Hydraulics, Hydrol. and Glaciol., ETH-Zurich, Zurich, Switzerland.
  • Lemke, P., et al. (2007), Observations: Changes in snow, ice and frozen ground, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of IPCC, edited by S. Solomon et al., pp. 337383, Cambridge Univ. Press, New York.
  • Li, H., Z. Li, M. Zhang, and W. Li (2011), An improved method based on shallow ice approximation to calculate ice thickness along flow-line and volume of mountain glaciers, J. Earth Sci., 22(4), 441448, doi:10.1007/s12583-011-0198-1.
  • Li, H., F. Ng, Z. Li, D. Qin, and G. Cheng (2012), An extended “perfect-plasticity” method for estimating ice thickness along the flow line of mountain glaciers, J. Geophys. Res., 117, F01020, doi:10.1029/2011JF002104.
  • Linsbauer, A., F. Paul, M. Hoelzle, H. Frey, and W. Haeberli (2009), The Swiss Alps without glaciers: A GIS-based modelling approach for reconstruction of glacier beds, in Proceedings of Geomorphometry 2009, edited by R. Purves et al., pp. 243247, Univ. of Zurich, Zurich, Switzerland.
  • Luethi, M., M. Funk, and A. Bauder (2008), Comment on ‘Integrated monitoring of mountain glaciers as key indicators of global climate change: The European Alps’ by Haeberli and others, J. Glaciol., 54(184), 199200.
  • Maisch, M., and W. Haeberli (1982), Interpretation geometrischer Parameter von Spätglazialgletschern im Gebiet Mittelbünden, Schweizer Alpen, in Beiträge zur Quartärforschung in der Schweiz, pp. 111126, Schriftenr. Phys. Geogr. Univ. Zürich, Zurich, Switzerland.
  • Maisch, M., A. Wipf, B. Denneler, J. Battaglia, and C. Benz (2000), Die Gletscher der Schweizer Alpen: Gletscherhochstand 1850, aktuelle Vergletscherung, Gletscherschwundszenarien, Final rep. 31, vdf Hochschulverlag, Zürich, Switzerland.
  • Marshall, S., E. White, M. Demuth, T. Bolch, R. Wheate, B. Menounos, M. Beedle, and J. Shea (2011), Glacier water resources on the eastern slopes of the Canadian Rocky Mountains, Can. Water Resour. J., 36(2), 109134, doi:10.4296/cwrj3602823.
  • Müller, F., T. Caflisch, and G. Müller (1976), Firn und Eis der Schweizer Alpen: Gletscherinventar, Geogr. Inst. der ETH Zurich, Zurich, Switzerland.
  • Narod, B., and G. Clarke (1994), Miniature high-power impulse transmitter for radio-echo sounding, J. Glaciol., 40(134), 190194.
  • Oerlemans, J., R. Giesen, and M. Van Den Broeke (2009), Retreating alpine glaciers: Increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland), J. Glaciol., 55(192), 729736.
  • Paterson, W. (1994), The Physics of Glaciers, Pergamon, Tarrytown, N. Y.
  • Paul, F. (2007), The new Swiss glacier inventory 2000: Application of remote sensing and GIS, PhD thesis, Schriften. Phys. Geogr., Univ. Zürich, Zürich, Switzerland.
  • Paul, F. (2010), The influence of changes in glacier extent and surface elevation on modeled mass balance, Cryosphere, 4(4), 569581, doi:10.5194/tc-4-569-2010.
  • Paul, F., and W. Haeberli (2008), Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models, Geophys. Res. Lett., 35, L21502, doi:10.1029/2008GL034718.
  • Paul, F., and A. Linsbauer (2012), Modeling of glacier bed topography from glacier outlines, central branch lines and a DEM, Int. J. Geograph. Inf. Sci., doi:10.1080/13658816.2011.627859, in press.
  • Paul, F., A. Kääb, M. Maisch, T. Kellenberger, and W. Haeberli (2004), Rapid disintegration of Alpine glaciers observed with satellite data, Geophys. Res. Lett., 31, L21402, doi:10.1029/2004GL020816.
  • Paul, F., H. Machguth, and A. Kääb (2005), On the impact of glacier albedo under conditions of extreme glacier melt: The summer of 2003 in the Alps, EARSeL eProc., 4(2), 139149.
  • Paul, F., A. Kääb, and W. Haeberli (2007a), Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies, Global Planet. Change, 56(1–2), 111122, doi:10.1016/j.gloplacha.2006.07.007.
  • Paul, F., M. Maisch, C. Rothenbuehler, M. Hoelzle, and W. Haeberli (2007b), Calculation and visualization of future glacier extent in the Swiss Alps by means of hypsographic modelling, Global Planet. Change, 55(4), 343357, doi:10.1016/j.gloplacha.2006.08.003.
  • Quincey, D., S. Richardson, A. Luckman, R. Lucas, J. Reynolds, M. Hambrey, and N. Glasser (2007), Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets, Global Planet. Change, 56(1–2), 137152, doi:10.1016/j.gloplacha.2006.07.013.
  • Radic, V., and R. Hock (2010), Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373.
  • Raper, S. C. B., and R. J. Braithwaite (2009), Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry, Cryosphere, 3(2), 183194.
  • Raymond, C., T. A. Neumann, E. Rignot, K. Echelmeyer, A. Rivera, and G. Casassa (2005), Retreat of Glaciar Tyndall, Patagonia, over the last half-century, J. Glaciol., 51(173), 239247.
  • Rickenbacher, M. (1998), Die digitale Modellierung des Hochgebirges im DHM25 des Bundesamtes für Topographie, Wiener Schr. Geograph. Kartographie, 11, 4955.
  • Rothenbühler, C. (2006), GISALP: Räumlich-zeitliche Modellierung der klimasensitiven Hochgebirgslandschaft des Oberengadins, PhD thesis, Geograph. Inst., Univ. Zürich, Zürich, Switzerland.
  • Swiss Federal Office of Topography (2005), Das digitale Höhenmodell der Schweiz, report, Bundesamt für Landestopographie, Wabern, Switzerland.
  • Terrier, S., F. Jordan, A. Schleiss, W. Haeberli, C. Huggel, and M. Künzler (2011), Optimized and adapted hydropower management considering glacier shrinkage scenarios in the Swiss Alps, in Proceedings of the International Symposium on Dams and Reservoirs under Changing Challenges: 79th Annual Meeting of ICOLD, Swiss Committee on Dams, Lucerne, Switzerland, edited by A. Schleiss and R. Boes, pp. 497508, Taylor and Francis, London.
  • Vacco, D. A., R. B. Alley, D. Pollard, and D. B. Reusch (2010), Numerical modeling of valley glacier stagnation as a paleoclimatic indicator, Quat. Res., 73(2), 403409, doi:10.1016/j.yqres.2009.09.006.
  • Watson, R., and W. Haeberli (2004), Environmental threats, mitigation strategies and high-mountain areas, Ambio, 13, 210.
  • World Glacier Monitoring Service (WGMS) (2008), Global glacier changes: Facts and figures, report, U. N. Environ. Prog., Zurich, Switzerland.
  • Zemp, M., A. Kääb, M. Hoelzle, and W. Haeberli (2005), GIS-based modelling of glacial sediment balance, Z. Geomorphol., 138, 113129.
  • Zemp, M., et al. (2007), UNEP: Global Outlook for Ice and Snow, pp. 115152, U. N. Environ. Prog., Nairobi.