Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost



[1] Recent changes in the climate of Arctic Alaska, including warmer summers and a lengthened growing season, have increased vegetation productivity and permafrost temperatures. In this study, we use (1) time series imagery to examine the landscape pattern of tall shrub distribution and expansion in Arctic Alaska and (2) lake sediments from watersheds where shrub expansion is occurring to compare twentieth century temporal trends between shrub cover, erosion, and runoff. Landsat thematic mapper data from 1986 and 2009 were used to evaluate the expansion of tall shrubs across three regional subscenes in the Arctic foothills in northeast Alaska. We found that tall shrubs occupied floodplains and streams in 1986 and have been expanding their coverage along these corridors. The interaction between shrub expansion and erosion was examined by reconstructing the last 60–100 years of erosion from sediment cores in four lakes with shrub expansion in the surrounding watersheds. Three of the four lake cores show a steadily increasing or fluctuating erosion rate until 1980, after which these cores show a synchronous decline. We postulate that the increase in shrubs since 1980 in landscape positions prone to erosion has contributed to the decline in erosion. A decrease in the magnitude and frequency of runoff events has likely also contributed to the decline in erosion. Our results indicate a general decline in erosion since 1980 that is contemporaneous with shrub expansion and peak runoff decline, punctuated by episodic erosion events in one of four catchments.