Validation and comparison of two soil-vegetation-atmosphere transfer models for tropical Africa

Authors

  • T. Akkermans,

    1. Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Heverlee, Belgium
    Search for more papers by this author
  • D. Lauwaet,

    1. Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Heverlee, Belgium
    2. Now at Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium
    Search for more papers by this author
  • M. Demuzere,

    1. Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Heverlee, Belgium
    Search for more papers by this author
  • G. Vogel,

    1. Meteorologisches Observatorium Lindenberg, Deutscher Wetterdienst, Tauche, Germany
    Search for more papers by this author
  • Y. Nouvellon,

    1. Ecologie Fonctionnelle et Biogéochimie des Sols and Agro-écosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
    2. Centre de Recherche sur la Durabilité et la Productivité des Plantations Industrielles (CRDPI), Pointe-Noire, Republic of the Congo
    3. Departamento de Ciências Atmosféricas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, São Paulo, Brazil
    Search for more papers by this author
  • J. Ardö,

    1. Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
    Search for more papers by this author
  • B. Caquet,

    1. Ecologie Fonctionnelle et Biogéochimie des Sols and Agro-écosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
    2. Centre de Recherche sur la Durabilité et la Productivité des Plantations Industrielles (CRDPI), Pointe-Noire, Republic of the Congo
    Search for more papers by this author
  • A. De Grandcourt,

    1. Ecologie Fonctionnelle et Biogéochimie des Sols and Agro-écosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
    2. Centre de Recherche sur la Durabilité et la Productivité des Plantations Industrielles (CRDPI), Pointe-Noire, Republic of the Congo
    Search for more papers by this author
  • L. Merbold,

    1. Grassland Science Group, Institute for Agricultural Sciences (IAS), ETH Zurich, Zurich, Switzerland
    Search for more papers by this author
  • W. Kutsch,

    1. Institut für Agrarrelevante Klimaforschung, Johann Heinrich von Thünen Institut, Braunschweig, Germany
    Search for more papers by this author
  • N. Van Lipzig

    1. Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Heverlee, Belgium
    Search for more papers by this author

Abstract

[1] This study aims to compare and validate two soil-vegetation-atmosphere-transfer (SVAT) schemes: TERRA-ML and the Community Land Model (CLM). Both SVAT schemes are run in standalone mode (decoupled from an atmospheric model) and forced with meteorological in-situ measurements obtained at several tropical African sites. Model performance is quantified by comparing simulated sensible and latent heat fluxes with eddy-covariance measurements. Our analysis indicates that the Community Land Model corresponds more closely to the micrometeorological observations, reflecting the advantages of the higher model complexity and physical realism. Deficiencies in TERRA-ML are addressed and its performance is improved: (1) adjusting input data (root depth) to region-specific values (tropical evergreen forest) resolves dry-season underestimation of evapotranspiration; (2) adjusting the leaf area index and albedo (depending on hard-coded model constants) resolves overestimations of both latent and sensible heat fluxes; and (3) an unrealistic flux partitioning caused by overestimated superficial water contents is reduced by adjusting the hydraulic conductivity parameterization. CLM is by default more versatile in its global application on different vegetation types and climates. On the other hand, with its lower degree of complexity, TERRA-ML is much less computationally demanding, which leads to faster calculation times in a coupled climate simulation.

Ancillary