SEARCH

SEARCH BY CITATION

References

  • Aguiar, L., J. Costa, G. Fischer, R. Aguiar, A. Costa, and W. Ferreira (2011), Estimate of the atmospheric long wave radiation in forest and pasture area in south west amazon, Rev. Brasileira Meteorol., 26(2), 215224.
  • Ardö, J., M. Mölder, B. El-Tahir, and H. Elkhidir (2008), Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan, Carbon Balance Manage., 3, 118, doi:10.1186/1750-0680-3-7.
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt (2011), Operational convective-scale numerical weather prediction with the cosmo model: description and sensitivities, Mon. Weather Rev., 139(12), 38873905.
  • Baldocchi, D. (2001), FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 24152434.
  • Baldocchi, D., K. Wilson, and L. Gu (2002), How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forestan assessment with the biophysical model canoak, Tree Physiol., 22(15–16), 10651077.
  • Bombelli, A., et al. (2009), An outlook on the Sub-Saharan Africa carbon balance, Biogeosciences, 6(10), 21932205.
  • Bonan, G., S. Levis, L. Kergoat, and K. W. Oleson (2002), Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models, Global Biogeochem. Cycles, 16(2), 1021, doi:10.1029/2000GB001360.
  • Boone, A., et al. (2004), The Rhone-Aggregation land surface scheme intercomparison project: An overview, J. Clim., 17(1), 187208.
  • Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap., 3(3), 127.
  • Brutsaert, W. (1975), On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11(5), 742744, doi:10.1029/WR011i005p00742.
  • Canadell, J., R. Jackson, J. Ehleringer, H. Mooney, O. Sala, and E. Schulze (1996), Maximum rooting depth of vegetation types at the global scale, Oecologia, 108(4), 583595.
  • Castaldi, S., A. deGrandcourt, A. Rasile, U. Skiba, and R. Valentini (2010), CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa, Biogeosciences, 7, 34593471.
  • Choudhury, B., S. Idso, and R. Reginato (1987), Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation, Agric. For. Meteorol., 39(4), 283297.
  • Christina, M., J. Laclau, J. Gonçalves, C. Jourdan, Y. Nouvellon, and J. Bouillet (2011), Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests, Ecosphere, 2(3), 10 pp.
  • Clapp, R., and G. Hornberger (1978), Empirical equations for some soil hydraulic properties, Water Resour. Res., 14(4), 601604, doi:10.1029/WR014i004p00601.
  • Collins, W., et al. (2006), The Community Climate System Model version 3 (CCSM3), J. Clim., 19(11), 21222143.
  • Crago, R., and W. Brutsaert (1996), Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio, J. Hydrol., 178(1–4), 241255.
  • Da Rocha, H., M. Goulden, S. Miller, M. Menton, L. Pinto, H. deFreitas, and A. e Silva Figueira (2004), Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia, Ecol. Appl., 14(sp4), 2232.
  • Davin, E., R. Stöckli, E. Jaeger, S. Levis, and S. Seneviratne (2011), COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model, Clim. Dyn., 1, 45.
  • Dickinson, R. E. (1984), Modeling evapotranspiration for three-dimensional global climate models, in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., vol. 29, edited by J. E. Hansen and T. Takahashi, pp. 5872, AGU, Washington, D. C., doi:10.1029/GM029p0058.
  • Dirmeyer, P., A. Dolman, and N. Sato (1999), The pilot phase of the Global Soil Wetness Project, Bull. Am. Meteorol. Soc., 80, 851878.
  • Doms, G., et al. (2011), A Description of the Nonhydrostatic Regional COSMO model. Part II: Physical Parameterization, 161 pp., Deutscher Wetterdienst, Offenbach, Germany.
  • Grasselt, R., D. Schuttemeyer, K. Warrach-Sagi, F. Ament, and C. Simmer (2008), Validation of TERRA-ML with discharge measurements, Meteorol. Z., 17(6), 763773.
  • Henderson-Sellers, A., K. McGuffie, and A. Pitman (1996), The project for intercomparison of land-surface parametrization schemes (PILPS): 1992 to 1995, Clim. Dyn., 12(12), 849859.
  • Huemmrich, K., J. Privette, M. Mukelabai, R. Myneni, and Y. Knyazikhin (2005), Time-series validation of MODIS land biophysical products in a Kalahari woodland, Africa, Int. J. Remote Sens., 26(19), 43814398.
  • Idso, S. (1981), A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies, Water Resour. Res., 17(2), 295304, doi:10.1029/WR017i002p00295.
  • Kleidon, A., and M. Heimann (1998), Optimized rooting depth and its impacts on the simulated climate of an atmospheric general circulation model, Geophys. Res. Lett., 25(3), 345348, doi:10.1029/98GL00034.
  • Kustas, W., C. Daughtry, and P. Van Oevelen (1993), Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices, Remote Sens. Environ., 46(3), 319330.
  • Laclau, J.-P., M. Arnaud, J.-P. Bouillet, and J. Ranger (2001), Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: Relationships with the ability of the stand to take up water and nutrients, Tree Physiol., 21, 129136.
  • Lauwaet, D., K. De Ridder, and N. Van Lipzig (2008), The influence of soil and vegetation parameters on atmospheric variables relevant for convection in the Sahel, J. Hydrometeorol., 9, 461476.
  • Lawrence, D., et al. (2011), Parameterization improvements and functional and structural advances in version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.
  • Lawrence, P. J., and T. N. Chase (2007), Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0), J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.
  • Leeuw, F. D., and E. V. Zantvoort (1997), Mapping of exceedances of ozone critical levels for crops and forest trees in the Netherlands: Preliminary results, Environ. Pollut., 96(1), 8998.
  • Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, and W. Wergen (2002), The operational global icosahedral–hexagonal gridpoint model GME: Description and high-resolution tests, Mon. Weather Rev., 130, 319338.
  • Merbold, L., et al. (2009), Precipitation as driver of carbon fluxes in 11 African ecosystems, Biogeosci. Discuss., 5, 40714105.
  • Merbold, L., W. Ziegler, M. Mukelabai, and W. Kutsch (2010), Spatial and temporal variation of CO2 efflux along a disturbance gradient in a miombo woodland in Western Zambia, Biogeosci. Discuss., 7, 57575800.
  • Moncrieff, J., J. Massheder, H. De Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat, S. Scott, H. Soegaard, and A. Verhoef (1997), A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188, 589611.
  • Nepstad, D., C. Decarvalho, E. Davidson, P. Jipp, P. Lefebvre, G. Negreiros, E. Dasilva, T. Stone, S. Trumbore, and S. Vieira (1994), The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures, Nature, 372, 666669.
  • Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su (2007), Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data, J. Geophys. Res., 112, D07103, doi:10.1029/2006JD007522.
  • Nouvellon, Y. (2010), Within-stand and seasonal variations of specic leaf area in a clonal Eucalyptus plantation in the Republic of Congo, For. Ecol. Manage., 259, 17961807.
  • Nussbaum, S., M. Geissmann, and J. Fuhrer (1995), Ozone exposure-response relationships for mixtures of perennial ryegrass and white clover depend on ozone exposure patterns, Atmos. Environ., 29(9), 989995.
  • Oleson, K., et al. (2004), Technical description of the Community Land Model (CLM), Tech. Note TN-461+ STR, 174 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Oleson, K., et al. (2007), CLM 3.5 documentation, 34 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Pielke, R. (2005), Land use and climate change, Science, 310(5754), 16251626.
  • Pitman, A. (2003), The evolution of, and revolution in, land-surface schemes designed for climate models, Int. J. Climatol., 23(5), 479510.
  • Pitman, A., and A. Henderson-Sellers (1998), Recent progress and results from the project for the intercomparison of landsurface parameterization schemes, J. Hydrol., 212, 128135.
  • Reynolds, C. A., T. J. Jackson, and W. J. Rawls (2000), Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions, Water Resour. Res., 36(12), 36533662, doi:10.1029/2000WR900130.
  • Rijtema, P. (1969), Soil moisture forecasting, Note 513, 28 pp., Inst. for Land and Water Manage. Res., Wageningen, Netherlands.
  • Rockel, B., A. Will, and A. Hense (2008), The regional climate model COSMO-CLM (CCLM), Meteorol. Z., 17(4), 347348.
  • Saux-Picart, S., C. Ottle, A. Perrier, B. Decharme, B. Coudert, M. Zribi, N. Boulain, B. Cappelaere, and D. Ramier (2009), SEtHyS Savannah: A multiple source land surface model applied to Sahelian landscapes, Agric. For. Meteorol., 149, 14211432.
  • Schenk, H. J., and R. B. Jackson (2002), The global biogeography of roots, Ecol. Monogr., 72(3), 311328.
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier (2002), An introduction to Meteosat second generation (MSG), Bull. Am. Meteorol. Soc., 83, 977992.
  • Schulz, J., et al. (2009), Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem. Phys., 9, 16871709.
  • Schüttemeyer, D., A. Moene, A. Holtslag, and H. De Bruin (2008), Evaluation of two land-surface schemes used in terrains of increasing aridity in West Africa, J. Hydrometeorol., 9, 173193.
  • Sellers, P., F. Hall, D. Strebel, R. Kelly, S. Verma, B. Markham, B. Blad, D. Schimel, J. Wang, and E. Kanemasu (1990), The First ISLSCP Field Experiment (FIFE): Experiment operations and interim results, Tech. Rep., NASA, Greenbelt, Md.
  • Sellers, P. J., et al. (1997), Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275(5299), 502509.
  • Seneviratne, S., D. Lüthi, M. Litschi, and C. Schär (2006), Land-atmosphere coupling and climate change in Europe, Nature, 443(7108), 205209.
  • Sjöström, M., et al. (2011), Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems, Remote Sens. Environ., 115(4), 10811089.
  • Snyder, P., C. Delire, and J. Foley (2004), Evaluating the influence of different vegetation biomes on the global climate, Clim. Dyn., 23(3), 279302.
  • Stöckli, R., and P. Vidale (2005), Modeling diurnal to seasonal water and heat exchanges at European Fluxnet site, Theor. Appl. Climatol., 80(2), 229243.
  • Stöckli, R., D. M. Lawrence, G.-Y. Niu, K. W. Oleson, P. E. Thornton, Z.-L. Yang, G. B. Bonan, A. S. Denning, and S. W. Running (2008), Use of FLUXNET in the Community Land Model development, J. Geophys. Res., 113, G01025, doi:10.1029/2007JG000562.
  • Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106(D7), 71837192, doi:10.1029/2000JD900719.
  • Williams, M., et al. (2009), Improving land surface models with FLUXNET data, Biogeosciences, 6, 13411359.
  • Wolski, P. (1998), Remote sensing, land use and hydrotopes in western province, Zambia elements of a groundwater study, Phys. Chem. Earth, 23(4), 479484.