• Bossavit, A., J. F. Lamaudiere, and B. Maestrali (1992), Microwave field in a loaded cavity, in Testing Electromagnetic Analysis Methods (T.E.A.M.), Int. Compumag Soc. (Available at
  • Canouet, N., L. Fezoui, and S. Piperno (2005), Discontinuous Galerkin time-domain solution of Maxwell's equations on locally-refined nonconforming Cartesian grids, COMPEL, 24, 13811401.
  • Cohen, G., P. Joly, J. E. Roberts, and N. Tordjman (2001), Higher order triangular finite elements with mass lumping for the wave equation, SIAM J. Numer. Anal., 38, 20472078.
  • Fisher, A., R. N. Rieben, G. H. Rodrigue, and D. A. White (2005), A generalized mass lumping technique for vector finite-element solutions of the time-dependent Maxwell equations, IEEE Trans. Antennas Propag., 53, 29002910.
  • Gedney, S. D., C. Luo, B. Guernsey, J. A. Roden, R. Crawford, and J. A. Miller (2007), The discontinuous Galerkin finite element time domain method (DGFETD): A high order, globally-explicit method for parallel computation, in Proceedingsof IEEE International Symposium on Electromagnetic Compatibility: EMC 2007, pp. 13, Inst. of Electr. and Electr. Eng., New York.
  • Gjonaj, E., T. Lau, and T. Weiland (2007), Conservation properties of the discontinuous Galerkin method for Maxwell equations, in Proceedings of International Conference on Electromagnetics in Advanced Applications: ICEAA 2007, pp. 356359, Inst. of Electr. and Electr. Eng., New York.
  • Hesthaven, J. S., and T. Warburton (2002), Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations, J. Comput. Phys., 181, 186221.
  • Hesthaven, J. S., and T. Warburton (2004), High order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem, Philos. Trans. R. Soc. London, Ser. A, 362, 493524.
  • Hipmair, R. (2002), Finite elements in computational electro magnetics, Acta Numerica, 11, 237339.
  • Jin, J.-M., and D. J. Riley (2008), Hybrid FETD-FDTD technique, in Finite Element Analysis of Antennas and Arrays, pp. 100146, John Wiley, Hoboken, N. J.
  • Mardahl, P. J., and J. P. Verboncoeur (1997), Charge conservation in electromagnetic PIC codes: Spectral comparison of Boris/DADI and Langdon-Marder methods, Comput. Phys. Commun., 106, 219229.
  • Rao, C. R., and S. K. Mitra (1973), Theory and application of constrained inverse of matrices, SIAM J. Appl. Math., 24, 473488.
  • Rieben, R., D. White, and G. Rodrigue (2004), High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations, IEEE Trans. Antennas Propag., 52, 21902195.
  • Rieben, R., G. Rodrigue, and D. White (2005), A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids, J. Comput. Phys., 204, 490519.
  • Schöberl, J., and S. Zaglmayr (2005), High order Nedelec elements with local complete sequence properties, COMPEL, 24, 374384.
  • Smithe, D. N., J. R. Cary, and J. A. Carlsson (2009), Divergence preservation in the ADI algorithms for electromagnetics, J. Comput. Phys., 228, 72897299.
  • Villasenor, J., and O. Buneman (1992), Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 69, 306316.
  • Warburton, T., and M. Embree (2006), The role of the penalty in the local discontinuous Galerkin method for Maxwell's eigenvalue problem, Comput. Methods Appl. Mech. Eng., 195, 32053223.
  • Webb, J. (1999), Hierarchical basis functions of arbitrary order for triangular and tetrahedral finite elements, IEEE Trans. Antennas Propag., 47, 12441253.
  • Yee, K. S. (1966), Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302307.