SEARCH

SEARCH BY CITATION

References

  • Abranin, E. P., Y. M. Bruck, V. V. Zakharenko, and A. A. Konovalenko (2001), The new preamplification system for the UTR-2 radio telescope, Exp. Astron., 11, 85112.
  • Boischot, A., C. Rosolen, M. G. Aubier, G. Daigne, F. Genova, Y. Leblanc, A. Lecacheux, J. deLa Noë, and B. Møller-Pedersen (1980), A new high-gain, broadband, steerable array to study Jovian decametric emission, Icarus, 43, 399407.
  • Braude, S. Y., A. V. Megn, B. P. Ryabov, N. K. Sharykin, and I. N. Zhouck (1978), Decametric survey of discrete sources in the northern sky I. The UTR-2 Radio Telescope. Experimental techniques and data processing, Astrophys. Space Sci., 54, 336.
  • Braun, R., et al. (2007), The LOFAR Transients Key Project (TKP) project plan, technical report, LOFAR, Dwingeloo, Netherlands.
  • Burke, B. F., and K. L. Franklin (1955), Observations of a variable radio source associated with the planet Jupiter, J. Geophys. Res., 60, 213217.
  • Burns, J. A., M. A. Showalter, J. N. Cuzzi, and R. H. Durisen (1983), Saturn's electrostatic discharges: Could lightning be the cause?, Icarus, 54, 280295.
  • dePater, I. (2004), LOFAR and Jupiter's radio (synchrotron) emissions, Planet. Space Sci., 52, 14491454.
  • dePater, I., and B. J. Butler (2003a), Low-frequency VLA observations of Jupiter, Icarus, 163, 428433.
  • dePater, I., and B. J. Butler (2003b), VLA observations of Jupiter's synchrotron radiation at 15 and 22 GHz, Icarus, 163, 449455.
  • dePater, I., et al. (2003), Jupiter's radio spectrum from 74 MHz up to 8 GHz, Icarus, 163, 434448.
  • deVos, M., A. W. Gunst, and R. Nijboer (2009), The LOFAR telescope: System architecture and signal processing, Proc. IEEE, 97(8), 14311437.
  • Dyudina, U. A., A. P. Ingersoll, S. P. Ewald, C. C. Porco, G. Fischer, W. S. Kurth, and R. A. West (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205, doi:10.1029/2010GL043188.
  • Fares, R., et al. (2010), Searching for star-planet interactions within the magnetosphere of HD 189733, Mon. Not. R. Astron. Soc., 406, 409419.
  • Farrell, W. M., M. D. Desch, and P. Zarka (1999), On the possibility of coherent cyclotron emission from extrasolar planets, J. Geophys. Res., 104(E6), 14,02514,032.
  • Farrell, W. M., M. L. Kaiser, G. Fischer, P. Zarka, W. S. Kurth, and D. A. Gurnett (2007), Are Saturn electrostatic discharges really superbolts? A temporal dilemma, Geophys. Res. Lett., 34, L06202, doi:10.1029/2006GL028841.
  • Fischer, G., and D. A. Gurnett (2011), The search for Titan lightning radio emissions, Geophys. Res. Lett., 38, L08206, doi:10.1029/2011GL047316.
  • Fischer, G., et al. (2011), Overview of Saturn lightning observations, in Planetary Radio Emissions VII, edited by H. O. Rucker et al., Austrian Acad. of Sci. Press, Vienna.
  • Grießmeier, J.-M., et al. (2004), The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters,” Astron. Astrophys., 425, 753762.
  • Grießmeier, J.-M., U. Motschmann, G. Mann, and H. O. Rucker (2005), The influence of stellar wind conditions on the detectability of planetary radio emissions, Astron. Astrophys., 437, 717726.
  • Grießmeier, J.-M., S. Preusse, M. Khodachenko, U. Motschmann, G. Mann, and H. O. Rucker (2007a), Exoplanetary radio emission under different stellar wind conditions, Planet. Space Sci., 55, 618630.
  • Grießmeier, J.-M., P. Zarka, and H. Spreeuw (2007b), Predicting low-frequency radio fluxes of known extrasolar planets, Astron. Astrophys., 475, 359368.
  • Grießmeier, J.-M., P. Zarka, J. Girard, S. ter Veen, and H. Falcke (2010), Ground-based study of solar system planetary lightning, in Proceedings of the ISKAF2010 Science Meeting, edited by A. G. Kosovichev, A. H. Andrei, and J.-P. Rozelot, p. 22, Neth. Inst. for Radio Astron., Dwingeloo.
  • Grießmeier, J.-M., et al. (2011), Ground-based study of Saturn lightning, in Planetary Radio Emissions VII, edited by H. O. Rucker et al., Austrian Acad. of Sci. Press, Vienna, in press.
  • Hess, S. L. G., and P. Zarka (2011), Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets, Astron. Astrophys., 531, doi:10.1051/0004-6361/201116510.
  • Hess, S., P. Zarka, and F. Mottez (2007), Io-Jupiter interaction, millisecond bursts and field-aligned potentials, Planet. Space Sci., 55, 8999.
  • Hess, S., P. Zarka, F. Mottez, and V. B. Ryabov (2009), Electric potential jumps in the Io-Jupiter flux tube, Planet. Space Sci., 57, 2333.
  • Hospodarsky, G. B., I. W. Christopher, J. D. Menietti, W. S. Kurth, D. A. Gurnett, T. F. Averkamp, J. B. Groene, and P. Zarka (2001), Control of Jovian radio emissions by the Galilean moons as observed by Cassini and Galileo, in Planetary Radio Emissions V, edited by H. O. Rucker, M. L. Kaiser, and Y. Leblanc, 155 pp., Austrian Acad. of Sci. Press, Vienna.
  • Ignace, R., M. L. Giroux, and D. G. Luttermoser (2010), Radio emissions from substellar companions of evolved cool stars, Mon. Not. R. Astron. Soc., 402, 26092616.
  • Kaiser, M. L., J. E. P. Connerney, and M. D. Desch (1983), Atmospheric storm explanation of saturnian electrostatic discharges, Nature, 303, 5053.
  • Karuppusamy, R., B. W. Stappers, and M. Serylak (2011), A low frequency study of PSRs B1133+16, B1112+50, and B0031–07, Astron. Astrophys., 525, A55.
  • Kassim, N. (2010), Galaxy clusters with the EVLA: Re-opening the low frequency window, paper presented at Galaxy Clusters: Observations, Physics and Cosmology, Max Planck Inst. für Astrophys., Munich, Germany.
  • Kassim, N. E., et al. (2007), The 74 MHz system on the Very Large Array, Astrophys. J. Suppl. Ser., 172, 686719.
  • Lazio, T. J. W., W. M. Farrell, J. Dietrick, E. Greenless, E. Hogan, C. Jones, and L. A. Hennig (2004), The radiometric Bode's law and extrasolar planets, Astrophys. J., 612, 511518.
  • Leblanc, Y., G. A. Dulk, R. J. Sault, and R. W. Hunstead (1997), The radiation belts of Jupiter at 13 and 22 cm I. Observations and 3-D reconstruction, Astron. Astrophys., 319, 274281.
  • Lecacheux, A., A. A. Konovalenko, and H. O. Rucker (2004), Using large radio telescopes at decametre wavelengths, Planet. Space Sci., 52(15), 13571374.
  • Nichols, J. D. (2011), Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: Implications for detectability of auroral radio emissions, Mon. Not. R. Astron. Soc., 414(3), 21252138, doi:10.1111/j.1365-2966.2011.18528.x.
  • Nigl, A., P. Zarka, J. Kuijpers, H. Falcke, L. Bähren, and L. Denis (2007), VLBI observations of Jupiter with the initial test station of LOFAR and the Nançay decametric array, Astron. Astrophys., 471, 10991104.
  • Nijboer, R., and M. Pandey-Pommier (2009), LOFAR imaging capabilities and system sensitivity, Tech. Rep. LOFAR-ASTRON-MEM-251, LOFAR, Dwingeloo, Netherlands.
  • Reiners, A., and U. R. Christensen (2010), A magnetic field evolution scenario for brown dwarfs and giant planets, Astron. Astrophys., 522, A13.
  • Ryabov, V. B., D. M. Vavriv, P. Zarka, B. P. Ryabov, R. Kozhin, V. V. Vinogradov, and L. Denis (2010), A low-noise, high-dynamic-range, digital receiver for radio astronomy applications: An efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz, Astron. Astrophys., 510, A16.
  • Santos-Costa, D., S. J. Bolton, and R. J. Sault (2009), Evidence for short-term variability of Jupiter's decimetric emission from VLA observations, Astron. Astrophys., 508, 10011010.
  • Sault, R. J., T. Oosterloo, G. A. Dulk, and Y. Leblanc (1997), The first three-dimensional reconstruction of a celestial object at radio wavelengths: Jupiter's radiation belts, Astron. Astrophys., 324, 11901196.
  • Stappers, B. W., et al. (2011), Observing pulsars and fast transients with LOFAR, Astron. Astrophys., 530, doi:10.1051/0004-6361/201116681.
  • Stevens, I. R. (2005), Magnetospheric radio emission from extrasolar giant planets: The role of the host stars, Mon. Not. R. Astron. Soc., 356, 10531063.
  • Swarup, G., S. Ananthakrishnan, V. K. Kapahi, A. P. Rao, C. R. Subrahmanya, and V. K. Kulkarni (1991), The Giant Metre-wave Radio Telescope, Curr. Sci., 60, 95105.
  • Treumann, R. A. (2006), The electron-cyclotron maser for astrophysical application, Astron. Astrophys. Rev., 13, 229315.
  • Udaya Shankar, N., K. S. Dwarakanath, S. Amiri, R. Somashekar, B. S. Girish, W. Laus, and A. Nayak (2009), A 50 MHz system for GMRT, in The Low-Frequency Radio Universe, edited by D. J. Saikia et al., ASP Conf. Ser., 407, 393397.
  • van derMarel, J., E. E. M. Woestenburg, and A. G. deBruyn (2005), Low frequency receivers for the WSRT - A window of opportunity, paper presented at the XXVIIIth General Assembly, Int. Union of Radio Sci., New Delhi.
  • Vanhamäki, H. (2011), Emission of cyclotron radiation by interstellar planets, Planet. Space Sci., 59, 862869.
  • Vidotto, A. A., M. Opher, V. Jatenco-Pereira, and T. I. Gombosi (2010), Simulations of winds of weak-lined T Tauri stars: II. The effects of a tilted magnetosphere and planetary interactions, Astrophys. J., 720, 12621280.
  • Warwick, J. W., et al. (1981), Planetary radio astronomy observations from Voyager 1 near Saturn, Science, 212(4491), 239243.
  • Willes, A. J., and K. Wu (2005), Radio emissions from terrestrial planets around white dwarfs, Astron. Astrophys., 432, 10911100.
  • Wu, C. S., and L. C. Lee (1979), A theory of the terrestrial kilometric radiation, Astrophys. J., 230, 621626.
  • Yantis, W. F., W. T. Sullivan III., and W. C. Erickson (1977), A search for extra-solar jovian planets by radio techniques, Bull. Am. Astron. Soc., 9, 453.
  • Zakharenko, V., et al. (2011), Ground-based and spacecraft observations of lightning activity on Saturn, Planet. Space Sci., in press.
  • Zarka, P. (1998), Auroral radio emissions at the outer planets: Observations and theories, J. Geophys. Res., 103(E9), 20,15920,194.
  • Zarka, P. (2002), Planetary science with the Low Frequency Array (LOFAR), paper presented at the XXVIIth General Assembly, Int. Union of Radio Sci., Maastricht, Netherlands.
  • Zarka, P. (2004), Fast radio imaging of Jupiter's magnetosphere at low-frequencies with LOFAR, Planet. Space Sci., 52, 14551467.
  • Zarka, P. (2005), Planetary low-frequency radio astronomy with large ground-based instruments, paper presented at the XXVIIIth General Assembly, Int. Union of Radio Sci., New Delhi.
  • Zarka, P. (2007), Plasma interactions of exoplanets with their parent star and associated radio emissions, Planet. Space Sci., 55, 598617.
  • Zarka, P., and B. M. Pedersen (1983), Statistical study of Saturn electrostatic discharges, J. Geophys. Res., 88(A11), 90079018.
  • Zarka, P., and B. M. Pedersen (1986), Radio detection of uranian lightning by Voyager 2, Nature, 323, 605608.
  • Zarka, P., et al. (1997), Ground-based high sensitivity radio astronomy at decameter wavelengths, in Planetary Radio Emissions IV, edited by H. O. Rucker, S. J. Bauer, and A. Lecacheux, pp. 101127, Austrian Acad. of Sci. Press, Vienna.
  • Zarka, P., R. A. Treumann, B. P. Ryabov, and V. B. Ryabov (2001), Magnetically-driven planetary radio emissions and application to extrasolar planets, Astrophys. Space Sci., 277, 293300.
  • Zarka, P., W. M. Farrell, M. L. Kaiser, E. Blanc, and W. S. Kurth (2004), Study of solar system planetary lightning with LOFAR, Planet. Space Sci., 52, 14351447.
  • Zarka, P., W. Farrell, G. Fischer, and A. Konovalenko (2008), Ground-based and space-based radio observations of planetary lightning, Space Sci. Rev., 137, 257269.