• equivalent edge currents;
  • geometrical optics;
  • modified edge representation;
  • physical optics;
  • scattering geometrical optics

[1] Equivalent edge currents (EECs) are widely used to asymptotically extract and express the diffraction from the periphery of the scatterers, as in the concept suggested by Young. Authors proposed novel EECs based on the unique concept named as Modified Edge Representation (MER), for surface to line integral reduction of Physical Optics (PO) radiation integral. MER is based upon not only asymptotic approximation but also Stokes' theorem, and it has remarkable accuracy even for small scatterers and is uniformly applicable at the geometrical boundaries. Moreover MER-EECs are clearly defined not only at the edges but also everywhere on the scatterer surface, with the singularity at the stationary phase point (SPP) if any. It comes that the radiation integral in general, consisting of both the diffraction and the Geometrical Optics (GO) components, could be reduced into two sets of line integration of MER-EECs along the periphery and the indentation at SPPs. In this paper, the GO reflection is numerically compared with the MER indentation integral around the reflected point for the dipole scattering from an ellipsoid; the error is empirically derived in analytical form.