SEARCH

SEARCH BY CITATION

References

  • Alkhalifah, T., and S. Fomel (2001), Implementing the fast marching Eikonal solver: Spherical versus Cartesian coordinates, Geophys. Prospect., 49, 165178, doi:10.1046/j.1365-2478.2001.00245.x.
  • Bean, B. R. (1962), The radio refractive index of air, Proc. IRE, 50(3), 260273, doi:10.1109/JRPROC.1962.288318.
  • Bean, B. R., and G. D. Thayer (1959), CRPL Exponential Reference Atmosphere, Natl. Bur. of Stand. Monogr., vol. 4, U.S. Gov. Print. Off., Washington, D. C. [Available at http://digicoll.manoa.hawaii.edu/techreports/PDF/NBS4.pdf]
  • Bevis, M., S. Businger, S. Chiswell, T. Herring, R. Anthes, C. Rocken, and R. Ware (1994), GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteorol., 33, 379386, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.
  • Bizouard, C., and D. Gambis (2009), The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame, in Geodetic Reference Frames, edited by H. Drewes, pp. 265270, Springer, Dordrecht, Netherlands.
  • Böckmann, S., T. Artz, and A. Nothnagel (2010), VLBI terrestrial reference frame contributions to ITRF2008, J. Geod., 84, 201219, doi:10.1007/s00190-009-0357-7.
  • Böhm, J., and H. Schuh (2003), Vienna mapping functions, in Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry, pp. 131143, Verlag des Bundesamtes für Kartogr. und Geod., Frankfurt, Germany.
  • Böhm, J., B. Werl, and H. Schuh (2006a), Tropospheric mapping function for GPS and very long baseline interferometry from European Center for Medium-range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629.
  • Böhm, J., A. Niell, P. Tregoning, and H. Schuh (2006b), The Global Mapping Function (GMF): A new empirical mapping function based on data from numerical weather model data, Geophys. Res. Lett., 33, L07304, doi:10.1029/2005GL025546.
  • Böhm, J., T. Hobiger, R. Ichikawa, T. Kondo, Y. Koyama, A. Pany, H. Schuh, and K. Teke (2010), Asymmetric tropospheric delays from numerical weather models for UT1 determination from VLBI intensive sessions on the baseline Wettzell-Tsukuba, J. Geod., 84(5), 319325, doi:10.1007/s00190-010-0370-x.
  • Böhm, J., S. Böhm, T. Nilsson, A. Pany, L. Plank, H. Spicakova, K. Teke, and H. Schuh (2011), The new Vienna VLBI software, in IAG Scientific Assembly 2009, Int. Assoc. of Geod. Symp., vol. 136, edited by S. Kenyon, M. C. Pacino, and U. Marti, pp. 10071012, Springer, Berlin.
  • Born, M., and E. Wolf (1999), Principles of Optics, 7th ed., 952 pp., Cambridge Univ. Press, New York.
  • Boudouris, G. (1963), On the index of refraction of air, the absorption and dispersion of centimetre waves by gases, J. Res. Natl. Bur. Stand., Sect. D, 67D(6), 631684.
  • Cerveny, V. (2005), Seismic Ray Theory, 713 pp., Cambridge Univ. Press, New York.
  • Cerveny, V., L. Klimes, and I. Psencik (1988), Complete seismic-ray tracing in three-dimensional structures, in Seismological Algorithms, edited by D. J. Doornbos, pp. 89168, Academic, San Diego, Calif.
  • Chen, G., and T. A. Herring (1997), Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res., 102(B9), 20,48920,502, doi:10.1029/97JB01739.
  • Cucurull, L. (2010), Improvement in the use of an operational constellation of GPS radio-occultation receivers in weather forecasting, Weather Forecast., 25, 749767, doi:10.1175/2009WAF2222302.1.
  • Davis, J. L. (1986), Atmospheric propagation effects on radio interferometry, PhD thesis, Harvard Coll. Obs., Mass. Inst. of Technol., Cambridge. [Available at http://hdl.handle.net/1721.1/27953]
  • Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered (1985), Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 20(6), 15931607.
  • Essen, L. (1953), The refractive indices of water vapour, air, oxygen, nitrogen, hydrogen, deuterium and helium, Proc. Phys. Soc. B, 66, 189193, doi:10.1088/0370-1301/66/3/306.
  • Essen, L., and K. D. Froome (1951), The refractive indices and dielectric constants of air and its principal constituents at 24 GHz, Proc. Phys. Soc., Sect. B, 64, 862875, doi:10.1088/0370-1301/64/10/303.
  • Fleisch, D. (2010), A Student's Guide to Maxwell's Equations, 134 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Gambis, D. (2004), Monitoring Earth orientation using space-geodetic techniques: State-of-the-art and prospective, J. Geod., 78(4–5), 295303, doi:10.1007/s00190-004-0394-1.
  • Gegout, P., R. Biancale, and L. Soudarin (2011), Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere, J. Geod., 85(10), 661677, doi:10.1007/s00190-011-0474-y.
  • Ghoddousi-Fard, R. (2009), Modelling tropospheric gradients and parameters from NWP models: Effects on GPS estimates, PhD thesis, 216 pp., Dep. of Geod. and Geomatics Eng., Univ. of N. B., Fredericton, N. B., Canada. [Available at http://gge.unb.ca/Pubs/TR264.pdf]
  • Gu, M., and F. K. Brunner (1990), Theory of the two frequency dispersive range correction, Manuscr. Geod., 15, 357361.
  • Haltnier, G. J., and F. L. Martin (1957), Dynamical and Physical Meteorology, McGraw-Hill, New York.
  • Healy, S. B. (2011), Refractivity coefficients used in the assimilation of GPS radio occultation measurements, J. Geophys. Res., 116, D01106, doi:10.1029/2010JD014013.
  • Hecht, E. (2001), Optics, 4th ed., 698 pp., Addison-Wesley, Boston, Mass.
  • Hobiger, T., R. Ichikawa, Y. Koyama, and T. Kondo (2008), Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models, J. Geophys. Res., 113, D20302, doi:10.1029/2008JD010503.
  • Hobiger, T., S. Shimada, S. Shimizu, R. Ichikawa, Y. Koyama, and T. Kondo (2010), Improving GPS positioning estimates during extreme weather situations by the help of fine-mesh numerical weather models, J. Atmos. Sol. Terr. Phys., 72(2–3), 262270, doi:10.1016/j.jastp.2009.11.018.
  • Kleijer, F. (2004), Tropospheric modeling and filtering for precise GPS leveling, PhD thesis, 262 pp., TU Delft, Delft, Netherlands. [Available at http://enterprise.lr.tudelft.nl/publications/files/ae_kleijer_20040413.pdf]
  • Kraus, H. (2004), Die Atmosphäre der Erde - Eine Einführung in die Meteorologie, 3rd ed., Springer, Berlin.
  • Kravtsov, Y. A., and Y. I. Orlov (1990), Geometrical Optics of Inhomogeneous Media, Springer, Berlin.
  • Lyard, F., F. Lefèvre, T. Letellier, and O. Francis (2006), Modelling the global ocean tides: A modern insight from FES2004, Ocean Dyn., 56, 394415, doi:10.1007/s10236-006-0086-x.
  • MacMillan, D. S., and C. Ma (1994), Evaluation of very long baseline interferometry atmospheric modeling improvements, J. Geophys. Res., 99(B1), 637651, doi:10.1029/93JB02162.
  • Mendes, V. B. (1999), Modeling the neutral-atmosphere propagation delay in radiometric space techniques, PhD thesis, 349 pp., Univ. of N. B., Fredericton, N. B., Canada.
  • Nafisi, V., M. Madzak, J. Böhm, H. Schuh, and A. A. Ardalan (2011), Ray-traced tropospheric slant delays in VLBI analysis, in Austrian Contributions to the XXV General Assembly of the International Union of Geodesy and Geophysics (IUGG), Oesterreichische Z. fuer Vermessung und Geoinf., vol. 2/2011, pp. 149153, Österreichische Geod. Komm., Vienna.
  • Nafisi, V., et al. (2012), Comparison of ray-tracing packages for troposphere delays, IEEE Trans. Geosci. Remote Sens., 50(2), 469481, doi:10.1109/TGRS.2011.2160952.
  • National Imagery and Mapping Agency (2000), Department of Defense World Geodetic System 1984, its definition and relationships with local geodetic systems, NIMA Tech. Rep., TR8350.2, St. Louis, Mo. [Available at http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf]
  • Nievinski, F. G. (2009), Ray-tracing options to mitigate the neutral atmosphere delay in GPS, MScE thesis, 232 pp., Dep. of Geod. and Geomatics Eng., Univ. of N. B., Fredericton, N. B., Canada. [Available at http://hdl.handle.net/1882/1050]
  • Nilsson, T. (2008), Measuring and modeling variations in the distribution of atmospheric water vapour using GPS, PhD thesis, Dep. of Radio and Space Sci., Chalmers Univ. of Technol., Gothenburg, Sweden.
  • Nilsson, T., and R. Haas (2010), Impact of atmospheric turbulence on geodetic very long baseline interferometry, J. Geophys. Res., 115, B03407, doi:10.1029/2009JB006579.
  • Office of the Federal Coordinator for Meteorology (2007), Rawinsonde and Pibal Observations, Fed. Meteorol. Handb., vol. 3, Washington, D. C.
  • Pany, A., J. Böhm, D. MacMillan, H. Schuh, T. Nilsson, and J. Wresnik (2011), Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions, J. Geod., 85(1), 3950, doi:10.1007/s00190-010-0415-1.
  • Petit, G., and B. Luzum (Eds.) (2010), IERS Conventions 2010, Frankfurt am Main, IERS Tech. Note, 36, 179 pp., Verlag des Bundesamts für Kartogr. und Geod., Frankfurt, Germany.
  • Petrov, L., and J. P. Boy (2004), Study of the atmospheric pressure loading signal in VLBI observations, J. Geophys. Res., 109, B03405, doi:10.1029/2003JB002500.
  • Rocken, C., S. Sokolovskiy, J. M. Johnson, and D. Hunt (2001), Improved mapping of tropospheric delays, J. Atmos. Oceanic Technol., 18, 12051213, doi:10.1175/1520-0426(2001)018<1205:IMOTD>2.0.CO;2.
  • Rüeger, J. M. (2002a), Refractive indices of light, infrared and radio waves in the atmosphere, Tech. Rep., UNISURV S-68, Sch. of Surv. and Spatial Inf. Syst., Univ. of N. S. W., Kensington, N. S. W., Australia.
  • Rüeger, J. M. (2002b), Refractive index formulae for radio waves, paper presented at FIG XXII International Congress, Int. Fed. of Surv., Washington, D. C. [Available at http://www.fig.net/pub/fig_2002/js28/js28_rueger.pdf]
  • Saastamoinen, J. (1972), Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser., vol. 15, edited by S. W. Henriksen, A. Mancini, and B. H. Chovitz, pp. 247251, AGU, Washington, D. C.
  • Scherneck, H.-G. (1991), A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements, Geophys. J. Int., 106, 677694, doi:10.1111/j.1365-246X.1991.tb06339.x.
  • Schlüter, W., and D. Behrend (2007), The International VLBI Service for Geodesy and Astrometry (IVS): Current capabilities and future prospects, J. Geod., 81(6–8), 379387, doi:10.1007/s00190-006-0131-z.
  • Smith, E. K., and S. Weintraub (1953), The constants in the equation for atmospheric refractive index at radio frequencies, J. Res. Natl. Bur. Stand. U.S., 50, 3941.
  • Stull, R. B. (2000), Meteorology for Scientists and Engineers, 2nd ed., Brooks/Cole, Independence, Ky.
  • Teke, K., et al. (2011), Multi-technique comparison of troposphere zenith delays and gradients during CONT08, J. Geod., 85(7), 395413, doi:10.1007/s00190-010-0434-y.
  • Thayer, G. D. (1967), A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere, Radio Sci., 1(2), 249252.
  • Thayer, G. (1974), An improved equation for the refractive index of air, Radio Sci., 9(10), 803807, doi:10.1029/RS009i010p00803.
  • Urquhart, L. (2011), Assessment of tropospheric slant factor models: Comparison with three dimensional ray-tracing and impact on geodetic positioning, MScE thesis, 190 pp., Dep. of Geod. and Geomatics Eng., Univ. of N. B., Fredericton, N. B., Canada. [Available at http://gge.unb.ca/Pubs/TR275.pdf]
  • Wallace, J. M., and P. V. Hobbs (2006), Atmospheric Science: An Introductory Survey, 2nd ed., 483 pp., Academic, San Diego, Calif.
  • Wheelon, A. D. (2001), Electromagnetic Scintillation, vol. 1, Geometrical Optics, 455 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Wijaya, D. D. (2010), Atmospheric correction formulae for space geodetic techniques, PhD thesis, 163 pp., Inst. of Eng., Geod. and Measur. Syst., Graz Univ. of Technol., Graz, Austria.
  • Zhevakin, S. A., and A. P. Naumov (1967), Refraction of millimetre and submillimetre radio waves in the lower atmosphere, Radio Eng. Electron. Phys. Engl. Transl., 12(1), 885894.