SEARCH

SEARCH BY CITATION

References

  • Anderson, E. A. (1976), A point energy and mass balance model of a snow cover, NOAA Tech. Rep. NWS 19, 150 pp., Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
  • Anderton, S. P., S. M. White, and B. Alvera (2004), Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Processes, 18, 435453.
  • Bagchi, A. K., V. V. Salomonson, and P. D. Shavasar (Ed.) (1979), Studies of snow accumulation characteristics on Himalayan Slopes, in Contribution of Space Observations to Water Resources Studies and the Management of These Resources, Advances in Space Exploration: COSPAR Symposium Series, no. 9. pp. 153156, Pergamon Press, Oxford, U. K.
  • Baker, F. S. (1944), Mountain climates of the western United States, Ecol. Monogr., 14(2), 223254.
  • Barbour, M. G., N. H. Berg, T. G. F. Kittel, and M. E. Kunz (1991), Snowpack and the distribution of a major vegetation ecotone in the Sierra Nevada of California, J. Biogeography, 18(2), 141149.
  • Blöschl, G. (1999), Scaling issues in snow hydrology, Hydrol. Processes, 13, 21492175.
  • Cline, D. W., R. C. Bales, and J. Dozier (1998), Estimating the spatial distribution of snow in mountain basins using remote sensing and energy balance modeling, Water Resour. Res., 34(5), 12751285.
  • Cline, D. W., et al. (2003), An overview of the NASA Cold Land Processes Field Experiment (CLPX-2002), in Microwave Remote Sensing of the Atmosphere and Environment III, edited by C. D. Kummerow, J. Jian, and S., Uratuka, pp. 361372, Int. Society for Optical Engineering, SPIE Proceedings, Vol. 4894, Milpitas, Calif.
  • Coughlan, J. C., and S. W. Running (1997), Regional ecosystem simulation: A general model for simulating snow accumulation and melt in mountainous terrain, Landscape Ecol., 12, 119136.
  • Dahe, Q., L. Shiyin, and L. Peiji (2006), Snow cover distribution, variability, and response to climate change in western China, J. Climate, 19, 18201833.
  • Daly, C., R. P. Neilson, and D. L. Phillips (1994), A statistical-topographic model for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorol., 33, 140158.
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris (2008), Physiographically sensitive mapping of temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 20312064.
  • Dozier, J., T. H. Painter, K. Rittger, and J. E. Frew (2008), Time-space continuity of daily maps of fractional snow cover and albedo from MODIS, Adv. Water Resour., 31, 15151526.
  • Durand, M., N. P. Molotch, and S. A. Margulis (2008), Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction, Remote Sens. Environ., 112(3), 12121225.
  • Elder, K., J. Dozier, and J. Michaelsen (1989), Spatial and temporal variation of net snow accumulation in a small alpine watershed, Emerald Lake Basin, Sierra Nevada, California, U.S.A., Ann. Glaciol., 13, 5663.
  • Elder, K., W. Rosenthal, and R. E. Davis (1998), Estimating the spatial distribution of snow water equivalence in a montane watershed, Hydrol. Processes, 12, 17931808.
  • Farnes, P. E. (1967), Criteria for determining mountain snow pillow sites, Proc. 35th Western Snow Conf., Boise, ID, pp. 5962.
  • Fassnacht, S. R., K. A. Dressler, and R. C. Bales (2003), Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data, Water Resour. Res., 39(8), 1208, doi:10.1029/2002WR001512.
  • Franz, K. J., T. S. Hogue, and S. Sorooshian (2008), Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts, J. Hydrol., 360, 4866.
  • Garen, D. C., and D. Marks (2005), Spatially distributed energy balance snowmelt modeling in a mountainous river basin: Estimation of meteorological inputs and verification of model results, J. Hydrol., 315, 126153.
  • Gemmer, M., S. Becker, and T. Jiang (2004), Observed monthly precipitation trends in China, Theor. Appl. Climatol., 77, 3945.
  • Goodison, B. E., P. Y. T. Louie, and D. Yang (1998), WMO solid precipitation measurement intercomparison: Final report, Instrum. Obs. Methods Rep., 67, 211 pp., World Meteorol. Organ., Geneva, Switzerland.
  • Grünewald, T., and M. Lehning (2011), Altitudinal dependency of snow amounts in two small alpine catchments: Can catchment-wide snow amounts be estimated via single snow or precipitation stations?, Ann. Glaciol., 52(58), 153158.
  • Grünewald, T., M. Schirmer, R. Mott, and M. Lehning (2010), Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment, Cryosphere, 4, 215225, doi:10.5194/tc-4-215-2010.
  • Hasenauer, H., K. Merganicova, R. Petritsch, S. A. Pietsch, and P. E. Thornton (2003), Validating daily climate interpolations over complex terrain in Austria, Agric. Forest Meteorol., 119, 87107.
  • He, M., T. S. Hogue, K. J. Franz, S. A. Margulis, and J. A. Vrugt (2011a), Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes, Adv. Water Resour., 34, 114127.
  • He, M., T. S. Hogue, K. J. Franz, S. A. Margulis, and J. A. Vrugt (2011b), Corruption of parameter behavior and regionalization by model and forcing data errors: A Bayesian example using the SNOW17 model, Water Resour. Res., 47, W07546, doi:10.1029/2010WR009753.
  • Homan, J. W., C. H. Luce, J. P. McNamara, and N. F. Glenn (2010), Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data, Hydrol. Processes, 25, 650660, doi:10.1002/hyp.7857.
  • Kattelmann, R., and K. Elder (1991), Hydrologic characteristics and water balance of an alpine basin in the Sierra Nevada, Water Resour. Res., 27(7), 15531562.
  • Lee, S., A. G. Klein, and T. M. Over (2005), A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the Snowmelt Runoff Model, Hydrol. Processes, 19, 29512972, doi:10.1002/hyp.5810.
  • Liston, G. E. (1999), Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling, J. Appl. Meteorol., 38(10), 14741487.
  • Littell, J. S., D. L. Peterson, and M. Tjoelker (2008), Water limits tree growth from stand to region: Douglas-fir growth-climate relationships in Northwestern ecosystems, Ecol. Monogr., 78, 349368.
  • López-Moreno, J. I., and D. Nogués-Bravo (2006), Interpolating local snow depth data: an evaluation of methods, Hydrol. Processes, 20(10), 22172232, doi:10.1002/hyp.6199.
  • Luce, C. H., D. G. Tarboton, and K. R. Cooley (2006), Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model, Hydrol. Processes, 13, 19211933.
  • Lundquist, J. D., and B. Huggett (2008), Evergreen trees as inexpensive radiation shields for temperature sensors, Water Resour. Res., 44, W00D04, doi:10.1029/2008WR006979.
  • Lundquist, J. D., and F. Lott (2008), Using inexpensive temperature sensors to monitor the duration and heterogeneity of snow-covered areas, Water Resour. Res., 44, W00D16, doi:10.1029/2008WR007035.
  • Lundquist, J. D., D. R. Cayan, and M. D. Dettinger (2003), Meteorology and hydrology in Yosemite National Park: A sensor network application, Proc. Second Int'l Workshop Information Processing in Sensor Networks (IPSN), pp. 518528
  • Marks, D., and J. Dozier (1992), Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance, Water Resour. Res., 28(11), 30433054.
  • Marks, D., J. Kimball, D. Tingey, and T. Link (1998), The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood, Hydrol. Processes, 12, 15691587.
  • Marquínez, J., J. Lastra, and P. García (2003), Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis, J. Hydrol., 270, 111.
  • Martinec, J., and A. Rango (1981), Areal distribution of snow water equivalent evaluated by snow cover monitoring, Water Resour. Res., 17(5), 14801488.
  • Meek, D. W., and J. L. Hatfield (1994), Data quality checking for single station meteorological databases, Agric. Forest Meteorol., 69, 85109.
  • Millar, C. I., and R. D. Westfall (2010), Distribution and climatic relationships of the American Pika (Ochotona princeps) in the Sierra Nevada and Western Great Basin, U.S.A.; Periglacial landforms as refugia in warming climates, Arct. Antarct. Alp. Res., 42(1), 7688.
  • Minder, J. R., P. W. Mote, and J. D. Lundquist (2010), Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains, J. Geophys. Res., 15, D14122, doi:10.1029/2009JD013493.
  • M. Miles and Associates (2003), British Columbia's climate-related observation networks: An adequacy review, 37 pp., BC Ministry of Water, Land, and Air Protection, Victoria, BC.
  • Molotch, N. P. (2009), Reconstructing snow water equivalent in the Rio Grande headwaters using remotely sensed snow cover data and a spatially distributed snowmelt model, Hydrol. Processes, 23(7), 10761089.
  • Molotch, N. P., and R. C. Bales (2005), Scaling snow observations from the point to the grid element: implications for observational network design, Water Resour. Res., 41, W11421, doi:10.1029/2005WR004229.
  • Molotch, N. P. and R. C. Bales (2006), Comparison of ground-based and airborne snow surface albedo parameterizations in an alpine watershed: Impact on snowpack mass balance, Water Resour. Res., 42, W05410, doi:10.1029/2005WR004522.
  • Molotch, N. P., and S. A. Margulis (2008), Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison, Adv. Water Resour., 31(11), 15031514.
  • Molotch, N. P., T. H. Painter, R. C. Bales, and J. Dozier (2004), Incorporating remotely-sensed snow albedo in a spatially-distributed snowmelt model, Geophys. Res. Lett., 31, L03501, doi:10.1029/2003GL019063.
  • Moore, R. D., and I. F. Owens (1984), Modelling alpine snow accumulation and ablation using daily climate observations, J. Hydrol. (N.Z.), 23(2), 7383.
  • Ninyerola, M., X. Pons, and J. M. Roure (2000), A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques, J. Climatol., 20, 18231841.
  • Pomeroy, J. W., B. Toth, R. J. Granger, N. R. Hedstrom, and R. L. H. Essery (2003), Variation in surface energetics during snowmelt in a subarctic mountain catchment, J. Hydrometeor., 4(4), 702719.
  • Prokop, A., M. Schirmer, M. Rub, M. Lehning, and M. Stocker (2008), A comparison of measurement methods: Terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow-depth distribution on slopes, Ann. Glacio., 49, 210216.
  • Raleigh, M. S. (2009), A statistical evaluation of a snow water equivalent reconstruction method using three snowmelt models at daily and hourly time steps, M.S. thesis, Dept. of Civil and Env. Eng., Univ. of Washington, Seattle.
  • Rango, A., and J. Martinec (1982), Snow accumulation derived from modified depletion curves of snow coverage, in Hydrological Aspects of Alpine and High Mountain Areas, edited by J. W. Glen, pp. 8389, International Assoc. Hydrological Sciences, Exeter, U. K.
  • Reba, M. L., D. Marks, A. Winstral, T. E. Link, and M. Kumar (2011), Sensitivity of the snowcover energetic in a mountain basin to variations in climate, Hydrol. Processes, 25, 33123321 doi:10.1002/hyp.8155.
  • Rice, R., R. C. Bales, T. H. Painter, and J. Dozier (2011), Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada, Water Resour. Res., 47, W08515, doi:10.1029/2010WR009278.
  • Roe, G. H. (2005), Orographic precipitation, Annu. Rev. Earth Planet. Sci., 33, 645671.
  • Richard, C., and D. J. Gratton (2001), The importance of the air temperature variable for the snowmelt runoff modeling using the SRM, Hydrol. Processes, 15, 33573370.
  • Running, S. W., R. R. Nemani, and R. D. Hungerford (1987), Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis, Can. J. For. Res., 17, 472483.
  • Rutter, N., et al. (2009), Evaluation of forest snow processes models (SnowMIP2), J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty (1999), Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data, Water Resour. Res., 35(7), 21452160.
  • Sevruk, B. (1983), Correction of measured precipitation in the Alps using the water equivalent of new snow, Nord. Hydrol., 14, 4958.
  • Shamir, E., and K. P. Georgakakos (2006), Distributed snow accumulation and ablation modeling in the American River basin, Adv. Water Resour., 29, 558570.
  • Skaugen, T. (2007), Modelling the spatial variability of snow water equivalent at the catchment scale, Hydrol. Earth Syst. Sci., 11, 15431550.
  • Smith, J. L., and N. Berg (1982), The Sierra Ecology Project, vol. 3, 104 pp., U.S. Department of the Interior, Washington, D.C.
  • Smith, M. B., D. Seo, V. I. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Moreda, and S. Cong (2004), The distributed model intercomparison project (DMIP): otivation and experiment design, J. Hydrol., 298, 426.
  • Storck, P. (2000), Trees, snow and flooding: An investigation of forest canopy effects on snow accumulation and melt at the plot and watershed scales in the Pacific Northwest, Water Resour. Series, Tech. Rep., 161, Dept. of Civil and Environmental Engineering, Univ.Washington, 176 pp.
  • Thornton, P. E., S. W. Running, and M. A. White (1997), Generating surfaces of daily meteorological variables over large regions of complex terrain, J. Hydrol., 190, 214251.
  • Tsintikidis, D., K. P. Georgakakos, J. A. Sperfslage, D. E. Smith and T. M. Carpenter (2002), Precipitation uncertainty and raingage network design within the Folsom Lake Watershed, J. Hydrol. Eng., 7(2), 175184.
  • United States Army Corps of Engineers (1956), Snow Hydrology: Summary Report of the Snow Investigations, 462 pp., North Pac. Div., Portland, Oreg.
  • Waicher, S. R., and M. S. Wigmosta (2003), Development of hourly meteorological values from daily data and significance to hydrological modeling at H. J. Andrews Experimental Forest, J. Hydrometeor., 4(2), 251263.
  • Weingartner, R., and C. Pearson (2001), A comparison of the hydrology of the Swiss Alps and the Southern Alps of New Zealand, Mountain Res. Develop., 21, 370381.