SEARCH

SEARCH BY CITATION

References

  • Ahmad, S., and D. Prashar (2010), Evaluating municipal water conservation policies using a dynamic simulation model, Water Resour. Manage., 24(13), 33713395.
  • Ahmad, S., and S. P. Simonovic (2000), System dynamics modeling of reservoir operations for flood management, ASCE J. Comput. Civ. Eng., 14(3), 190198.
  • Ahmad, S., and S. P. Simonovic (2001), Integration of heuristic knowledge with analytical tools for selection of flood control measures, Can. J. Civ. Eng., 28(2), 208221.
  • Ahmad, S., and S. P. Simonovic (2004), Spatial system dynamics: A new approach for simulation of water resources systems, ASCE J. Comput. Civ. Eng., 18(4), 331340.
  • Ahmad, S., and S. P. Simonovic (2005), An artificial neural network model for generating hydrograph from hydro-meteorological parameters, J. Hydrol., 315(1–4), 236251.
  • Ahmad, S., and S. P. Simonovic (2006), An intelligent decision support system for management of floods, Water Resour. Manage., 20(3), 391410.
  • Ahmad, S., A. Kalra, and H. Stephen (2010), Estimating soil moisture using remote sensing data: A machine learning approach, Adv. Water Resour., 33(1), 6980.
  • ASCE Task Committee (2000a), Artificial neural networks in hydrology I: Preliminary concepts, J. Hydrol. Eng., 5(2), 115123.
  • ASCE Task Committee (2000b), Artificial neural networks in hydrology II: Hydrologic applications, J. Hydrol. Eng., 5(2), 124137.
  • Asefa, T., M. Kemblowski, M. McKee, and A. Khalil (2006), Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318, 716.
  • Ashok, K., Z. Guan, and T. Yamagata (2001), Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophys. Res. Lett., 28(23), 44994502, doi:10.1029/2001GL013294.
  • Ashok, K., Z. Guan, and T. Yamagata (2003), Influence of the Indian Ocean Dipole on the Australian winter rainfall, Geophys. Res. Lett., 30(15), 1821, doi:10.1029/2003GL017926.
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata (2007), El Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.
  • Barlow, M., H. Cullen, and B. Lyon (2002), Drought in central and southwest Asia: La Nina, the warm pool, and Indian Ocean precipitation, J. Clim., 15(7), 697700.
  • Bell, T. L. (1987), A space-time stochastic model of rainfall for satellite remote-sensing studies, Geophys. Res. Lett., 92(D8), 96319643.
  • Bjerknes, J. (1966), A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature, Tellus, 18, 820829.
  • Boser, B., I. Guyon, and V. Vapnik (1992), A training algorithm for optimal margin classifiers, in Annual Conference on Computational Learning Theory, pp. 144152, ACM Press, Pittsburgh, Pa.
  • Brito-Castillo, L., A. Leyva-Contreras, A. V. Douglas, and D. Lluch-Belda (2002), Pacific decadal oscillation and the filled capacity of dams on the rivers of the Gulf of California continental watershed, Atmosfera, 15, 121138.
  • California Dep. of Water Resources (2005), Colorado River Basin Climate: Paleo, Present, Future, Spec. Publ. of Assoc. Calif. Water Agencies and Colorado River Water Users Assoc. Conf., Calif. Dep. Water Res., Sacramento, Calif., 80 pp.
  • Cancelliere, A., D. Mauro, B. Bonaccorso, and G. Rossi (2007), Investigating the potential of NAO index to forecast droughts in Sicily, in Hydrology Days, edited by J. A. Ramirez, pp. 7586, Colorado State Univ., Fort Collins, Colo.
  • Canon, J., J. Gonzalez, and J. Valdes (2007), Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals, J. Hydrol., 333, 252264.
  • Carrier, C., A. Kalra, and S. Ahmad (2011), Using proxy reconstructions for streamflow forecasting, in World Environmental and Water Resources Congress: Bearing Knowledge for Sustainability, edited by R. E. BeighleyII and M. W. Killgore, pp. 31243133, Palm Springs, Calif.
  • Cayan, D. R., M. D. Dettinger, H. F. Diaz, and N. E. Graham (1998), Decadal climate variability of precipitation over western North America, J. Clim., 11(12), 31483166.
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle (1999), ENSO and hydrologic extremes in the western United States, J. Clim., 12, 28812893.
  • Chowdhury, S., and A. Sharma (2009), Multisite seasonal forecast of arid river flows using a dynamic model combination approach, Water Resour. Res., 45, W10428, doi:10.1029/2008WR007510.
  • Colle, B. A. (2004), Sensitivity of Orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective, J. Atmos. Sci., 61, 588606.
  • Coulibaly, P. (2006), Spatial and temporal variability of Canadian seasonal precipitation (1900–2000), Adv. Water Resour., 29(12), 18461865.
  • Coulibaly, P., F. Anctil, P. Rasmussen, and B. Bobee (2000), A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff, Hydrol. Processes, 14, 27552777.
  • Dawadi, S., and S. Ahmad (2012), Changing Climatic Conditions in the Colorado River Basin: Implications for Water Resources Management, J. Hydrol., 430–431, 127141, doi:10.1016/j.jhydrol.2012.02.010.
  • Diaz, H. F., and G. N. Kiladis (1992), Atmospheric teleconnection associated with the extreme phase of the Southern Oscillation, in El Nino: Historical and Paleoclimatic Aspects of the Southern Oscillation, edited by H. F. D. A. V. Markgraf, pp. 728, Cambridge Univ. Press, New York.
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid (2001), ENSO variability, teleconnections and climate change, Int. J. Climatol., 21, 18451862.
  • Dibike, Y. B., D. Solomatine, and M. B. Abbott (1999), On the encapsulation of numerical hydraulic models in artificial neural network, J. Hydraul. Res., 37(2), 147161.
  • Dibike, Y. B., S. Velickov, D. Solomatine, and M. B. Abbott (2001), Model induction with support vector machines: Introduction and application, J. Comput. Civ. Eng., 15(3), 208216.
  • Dickson, R. R., T. J. Osborn, J. W. Hurrell, J. Meincke, J. Blindheim, B. Adlandsvik, T. Vinje, G. Alekseev, and W. Maslowski (2000), The Arctic Ocean response to the North Atlantic oscillation, J. Clim., 13, 26712696.
  • Dracup, J. A., and E. Kahya (1994), The relationship between US streamflow and La Nina, Water Resour. Res., 30(7), 21332141.
  • Efron, B. (1979), Bootstrap methods: Another look at the jacknife, Ann. Stat., 7, 126.
  • Ellis, A. W., G. B. Goodrich, and G. M. Garfin (2010), A hydroclimatic index for examining patterns of drought in the Colorado River Basin, Int. J. Climatol., 30, 236255.
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble (2001), The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S., Geophys. Res. Lett., 28, 20772080.
  • Feng, S., and Q. Hu (2007), Changes in winter snowfall/precipitation ratio in the contiguous United States, J. Geophys. Res., 112, D15109, doi:10.1029/2007JD008397.
  • Forsee, W. J., and S. Ahmad (2011), Evaluating urban stormwater infrastructure design in response to projected climate change, J. Hydrol. Eng., 16(11), 865873, doi:10.1061/ASCE-HE.1943-5584.0000383.
  • Geisser, S. (1975), The predictive sample reuse method with applications, J. Am. Stat. Assoc., 70, 320328.
  • Gershunov, A., and T. P. Barnett (1998), Interdecadal modulation of ENSO telecommunications, Bull. Am. Meteorol. Soc., 79, 27152726.
  • Giannini, A., M. A. Cane, and Y. Kushnir (2001), Interdecadal changes in the ENSO teleconnection to the Caribbean region and the North Atlantic oscillation, J. Clim., 14, 28672879.
  • Gill, M. K., T. Asefa, M. Kemblowski, and M. McKee (2006), Soil moisture prediction using support vector machines, J. Am. Water Resour. Assoc., 42(4), 10331046.
  • Grantz, K., B. Rajagopalan, M. P. Clark, and E. A. Zagona (2005), A technique for incorporating large-scale climate information in basin-scale ensemble streamflow forecasts, Water Resour. Res., 41, W10410, doi:10.1029/2004WR003467.
  • Guenni, L., and A. Bardossy (2002), A two steps disaggregation method for highly seasonal rainfall, Stoch. Environ. Res. Risk Assess., 16, 188206.
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo (1999), Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, J. Hydrol. Eng., 4(2), 135143.
  • Guttman, N. B., and R. G. Quayle (1996), A historical perspective of U.S. climate divisions, Bull. Am. Meteorol. Soc., 77, 293303.
  • Gutzler, D. S., D. M. Kann, and C. Thornbrugh (2002), Modulation of ENSO-based long-lead outlooks of Southwestern U.S. winter precipitation by the pacific decadal oscillation, Bull. Am. Meteorol. Soc., 17, 11631172.
  • Guyon, I., B. Boser, and V. Vapnik (1993), Automatic capacity tuning of very large VC-dimension classifiers, in Advances in Neural Information Processing Systems, edited by S. J. Hanson, J. D. Cowan, and C. L. Giles, pp. 147155, Morgan Kaufmann Publ., San Francisco, Calif.
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier (2005), Effects of temperature and precipitation variability on snowpack trends in the western United States, Am. Meteorol. Soc., 18, 45454561.
  • Haykin, S. (2003), Neural Networks: A comprehensive foundation, 4th edition, Pearson Educ., Singapore.
  • Hidalgo, H. G., and J. A. Dracup (2003), ENSO and PDO effects on hydroclimatic variations of the Upper Colorado River Basin, J. Hydrometeorol., 4, 523.
  • Higgins, R. W., W. A. Leetmaa, Y. Xue, and A. Barnston (2000), Dominant factors influencing the seasonal predictability of U.S. precipitation and surface air temperature, J. Clim., 13, 39944017.
  • Hsu, K.-L., H. V. Gupta, and S. Sorooshian (1995), Artificial neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 25172530.
  • Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta (1997), Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteorol., 36, 11761190.
  • Hu, Q., and S. Feng (2001), Variations of teleconnection of ENSO and interannual variation in summer rainfall in the central United States, J. Clim., 14, 24692480.
  • Hurrell, J. W. (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269(5224), 676679.
  • Kahya, E., and J. A. Dracup (1993), U.S. streamflow patterns in relation to the El Nino/southern oscillation, Water Resour. Res., 29(8), 24912503, doi:10.1029/93WR00744.
  • Kalra, A. (2012), Association of oceanic-atmospheric oscillations and hydroclimatic variables in the Colorado River Basin, Ph.D. dissertation, 220 pp., Univ. of Nev., Las Vegas, Nev.
  • Kalra, A., and S. Ahmad (2009), Using oceanic-atmospheric oscillations for long lead time streamflow forecasting, Water Resour. Res., 45, W03413, doi:10.1029/2008WR006855.
  • Kalra, A., and S. Ahmad (2011), Evaluating changes and estimating seasonal precipitation for Colorado River Basin using stochastic nonparametric disaggregation technique, Water Resour. Res., 47, W05555, doi:10.1029/2010WR009118.
  • Kalra, A., W. P. Miller, K. W. Lamb, S. Ahmad, and T. Piechota (2012), Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins, Hydrol. Processes, doi:10.1002/hyp.9236, in press.
  • Kane, R. P. (1999), El Nino timings and rainfall extremes in India, Southeast Asia and China, Int. J. Climatol., 19, 653672.
  • Karl, T. R., and R. W. Knight (1997), Secular trends of precipitation amount, frequency, and intensity in the United States, Bull. Am. Meteorol. Soc., 79(2), 231241.
  • Karl, T. R., C. N. Williams Jr., and P. J. Young (1986), A model to estimate the time of observation bias associated with monthly mean maximum, minimum, and mean temperatures for United States, J. Clim. Appl. Meteorol., 25, 145160.
  • Khalil, A., M. N. Almasri, M. McKee, and J. J. Kaluarachchi (2005), Applicability of statistical learning algorithms in groundwater quality modeling, Water Resour. Res., 41, W05010, doi:10.1029/2004WR003608.
  • Kiem, A. S., and S. W. Franks (2004), Multi-decadal variability of drought risk, eastern Australia, Hydrol. Processes, 18(11), 20392050.
  • Kim, T.-W., J. B. Valdes, B. Nijssen, and D. Roncayolo (2006), Quantification of linkages between large-scale climate patterns and precipitation in the Colorado River Basin, J. Hydrol., 321, 173186.
  • Kim, T.-W., C. Yao, and J.-H. Ahn (2008), Influence of climate variation on seasonal precipitation in the Colorado River Basin, Stoch. Environ. Res. Risk Assess., 22, 411420.
  • Kuligowski, R. J., and A. P. Barros (1998), Experiments in short-term precipitation forecasting using artificial neural networks, Mon. Weather Rev., 126, 470482.
  • Kushnir, Y., V. J. Cardone, J. G. Greenwood, and M. A. Cane (1997), The recent increase in the North Atlantic wave heights, J. Clim., 10, 21072113.
  • Lall, U., and A. Sharma (1996), A nearest neighbor bootstrap for resampling hydrologic time series, Water Resour. Res., 32(3), 679693.
  • Lall, U., B. Rajagopalan, and D. G. Tarboton (1996), A nonparametric wet/dry spell for resampling daily precipitation, Water Resour. Res., 32(9), 28032823.
  • Lau, K. M., and H. T. Wu (2001), Principal modes of rainfall-SST variability of the Asian summer monsoon: A reassessment of the Monsoon-ENSO relationship, J. Clim., 14, 24802895.
  • Legates, D. R., and G. J. McCabe (1999), Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35(1), 233241.
  • Li, P. H., H. H. Kwon, L. Sun, U. Lall, and J. J. Kao (2010), A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan, Int. J. Climatol., 30, 12561268.
  • Lin, G.-F., G.-R. Chen, M.-C. Wu, and Y.-C. Chou (2009), Effective forecasting of hourly typhoon rainfall using support vector machines, Water Resour. Res., 45, W08440, doi:10.1029/2009WR007911.
  • Lin, G.-F., G.-R. Chen, and P.-Y. Huang (2010), Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting, Adv. Water Resour., 33, 887898.
  • Liong, S.-Y., and C. Sivapragasam (2002), Flood stage forecasting with support vector machines, J. Am. Water Resour. Assoc., 38(1), 173186.
  • Mantua, N. J., Y. Z. Hare, J. M. Wallace, and R. C. Francis (1997), A pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78, 10691079.
  • McCabe, G. J., and M. D. Dettinger (1999), Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States, Int. J. Climatol., 19, 13991410.
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt (2004), Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States, Proc. Natl. Acad. Sci., 101(12), 41364141.
  • McCabe, G. J., J. L. Betancourt, and H. G. Hidalgo (2007), Associations of decadal to multidecadal sea-surface temperature variability with Upper Colorado river flow, J. Am. Water Resour. Assoc., 43(1), 183192.
  • Melesse, A. M., S. Ahmad, M. E. McClain, X. Wang, and Y. H. Lim (2011), Suspended sediment load prediction of river systems: An artificial neural network approach, Agric. Water Manage., 98(5), 855866.
  • Merideth, R. (2000), A primer on climatic variability and change in the southwest, 28 pp., Udall Cent. for Stud. in Public Policy and the Inst. of the Study of Plant Earth, Univ. of Ariz., Tucson, Ariz.
  • Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith (2007), Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. Am. Soc. Agric. Biol. Eng., 50(3), 885900.
  • Mosquera-Machado, S., and S. Ahmad (2007), Flood hazard assessment of Atrato river in Colombia, Water Resour. Manage., 21(3), 591609.
  • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models: Part 1. A discussion of principles, J. Hydrol., 10(3), 282290.
  • Olsson, J. (1998), Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrol. Earth Syst. Sci., 2(1), 1930.
  • Piechota, T. C., and J. A. Dracup (1996), Drought and regional hydrologic variation in the United States: Association with the El Nino-Southern Oscillation, Water Resour. Res., 32(5), 13591373.
  • Potts, J. M., C. K. Folland, I. T. Jolliffe, and D. Sexton (1996), Revised “LEPS” scores for assessing climate model simulations and long-range forecasts, J. Clim., 9, 3453.
  • Prairie, J., and R. Callejo (2005), Natural Flow and Salt Computation Methods, Calendar Years 1971–1995, U.S. Dep. Interior, Bur. of Reclam., Boulder City, Nev., 112 pp.
  • Pui, A., A. Lal, and A. Sharma (2011), How does the Interdecadal Pacific Oscillation affect design floods in Australia?, Water Resour. Res., 47, W05554, doi:10.1029/2010WR009420.
  • Pulwarty, R. S., and T. S. Melis (2001), Climate extremes and adaptive management on the Colorado River: Lessons from the 1997–1998 ENSO event, J. Environ. Manage., 63, 207324.
  • Puri, S., H. Stephen, and S. Ahmad (2011), Relating TRMM precipitation radar land surface backscatter response to soil moisture in the southern United States, J. Hydrol., 402(1–2), 115125.
  • Qaiser, K., S. Ahmad, W. Johnson, and J. Batista (2011), Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region, J. Environ. Manage., 92(8), 20612068.
  • Qian, B., J. Corte-real, and H. Xu (2000), Is the North Atlantic Oscillation the most important atmospheric pattern for precipitation in Europe, Geophys. Res. Lett., 105, 11,90111,910.
  • Rajagopalan, B., and U. Lall (1998), Interannual variability in western US precipitation, J. Hydrol., 210, 5167.
  • Rajagopalan, B., and U. Lall (1999), A k-nearest neighbor simulator for daily precipitation and other weather variables, Water Resour. Res., 35(10), 30893101.
  • Raman, H., and N. Sunilkumar (1995), Multivariate modelling of water resources time series using artificial neural networks, J. Hydrol. Sci., 40(2), 145163.
  • Redmond, K. T., and R. W. Koch (1991), Surface climate and streamflow variability in the western United States and their relationship to large scale circulation indices, Water Resour. Res., 27, 23812399.
  • Regonda, S. K., B. Rajagopalan, M. Clark, and E. Zagona (2006), A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin, Water Resour. Res., 42, W09404, doi:10.1029/2005WR004653.
  • Ropelewski, C. F., and M. S. Halpert (1986), North American precipitation and temperature patterns associated with El-Nino-Southern Oscillation (ENSO), Mon. Weather Rev., 114, 21652352.
  • Ropelewski, C. F., and P. D. Jones (1987), An extension of the Tahiti-Darwin Southern Oscillation Index, Am. Meteorol. Soc., 115(9), 21612165.
  • Sax, J. L., B. H. Thompson, J. D. Leshy, and R. H. Abrams (2000), Legal Control of Water Resources: Cases and Materials, West Group, St. Paul, Minn., 956 pp.
  • Schölkopf, B., K.-K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik (1997), Comparing support vector machines with gaussian kernels to radial basis function classifiers, IEEE Trans. Signal Process., 45(11), 27582765.
  • Sharma, A., D. G. Tarboton, and U. Lall (1997), Streamflow simulation: A nonparametric approach, Water Resour. Res., 33(2), 291308.
  • Shrestha, E., S. Ahmad, W. Johnson, P. Shrestha, and J. Batista (2011), Carbon footprint of water conveyance versus desalination as alternatives to expand water supply, Desalination, 27(1–3), 120127.
  • Shrestha, E., S. Ahmad, W. Johnson, and J. Batista (2012), The carbon footprint of water management policy options, Energy Policy, 42, 201212, doi:10.1016/j.enpol.2011.11.074.
  • Simonovic, S. P., and S. Ahmad (2005), Computer-based model for flood evacuation emergency planning, Nat. Hazards, 34(1), 2551.
  • Singh, J., H. V. Knapp, and M. Demissie (2004), Hydrologic modeling of the Iroquosis River watershed using HSPF and SWAT, Rep. ISWS CR 2004-08, Ill. Water Surv., Champaign, Ill.
  • Singh, J., H. V. Knapp, J. G. Arnold, and M. Demissie (2005), Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT, J. Am. Water Resour. Assoc., 41(2), 361375.
  • Singhrattna, N., B. Rajagopalan, M. P. Clark, and K. K. Kumar (2005), Seasonal forecasting of Thailand summer monsoon rainfall, Int. J. Climatol., 25, 649664.
  • Smola, A. J., and B. Schölkopf (2004), A tutorial on support vector regression, Stat. Comput., 14, 199222.
  • Smola, A. J., B. Schölkopf, and K. R. Muller (1998), The connection between regularization operators and support vector kernels, Neural Networks, 11, 637649.
  • Stephen, H., S. Ahmad, T. C. Piechota, and C. Tang (2010), Relating surface backscatter response from TRMM precipitation radar to soil moisture: Results over a semi-arid region, Hydrol. Earth Syst. Sci., 14(2), 193204.
  • Stone, M. (1974), Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc., 36, 111147.
  • Suykens, J. A. K. (2001), Nonlinear modeling and support vector machines, in Proceedings of IEEE Instrumentation and Measurement Technology Conference, vol. 1, pp. 287294, Budapest, Hungary, doi:10.1109/IMTC.2001.928828.
  • Thomas, B. E. (2007), Climatic fluctuations and forecasting of streamflow in the Lower Colorado River Basin, J. Am. Water Resour. Assoc., 46(6), 15501569.
  • Tokar, A. S., and P. A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232239.
  • Tokar, A. S., and M. Markus (2000), Precipitation-Runoff modeling using artificial neural networks and conceptual models, J. Hydrol. Eng., 5(2), 156161.
  • Tripathi, S., V. V. Srinivas, and R. S. Nanjundiah (2006), Downscaling of precipitation for climate change scenarios: A support vector machine approach, J. Hydrol., 330, 621640.
  • Twarakavi, N. K. C., D. Mishra, and S. Bandopadhyay (2006), Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data, Nat. Resour. Res., 15(1), 1526.
  • Twarakavi, N. K. C., J. Simunek, and M. G. Schaap (2009), Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines, Soil Sci. Soc. Am. J., 73(5), 14431452.
  • U.S. Environmental Protection Agency (2002), Guidance for quality assurance project plans for modeling, EPA QA/G-5M, Rep. EPA/240/R-02/007, Off. of Environ. Inf., U.S. Environ. Protect. Agency, Washington, D.C.
  • Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer, New York.
  • Vapnik, V. (1998), Statistical Learning Theory, Wiley, New York.
  • Vedwan, N., S. Ahmad, F. Miralles-Wilhelm, K. Broad, D. Letson, and G. Podesta (2008), Institutional evolution in Lake Okeechobee management in Florida: Characteristics, impacts, and limitations, Water Resour. Manage., 22(6), 699718.
  • Venkatesan, A. K., S. Ahmad, W. Johnson, and J. Batista (2011a), Salinity reduction and energy conservation in direct and indirect portable water reuse, Desalination, 272(1–3), 120127.
  • Venkatesan, A. K., S. Ahmad, W. Johnson, and J. Batista (2011b), System dynamics model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas valley, Sci. Total Environ., 409(13), 26162625.
  • Viles, H. A., and A. S. Goudie (2003), Interannual, decadal and multidecadal scale climate variability and geomorphology, Earth Sci. Rev., 61, 105131.
  • Walsh, J. E., W. L. Chapman, and T. Shy (1996), Recent decrease of sea level pressure in the Central Arctic, J. Clim., 9, 480486.
  • Wang, B., R. G. Wu, and X. H. Fu (2000), Pacific-East Asia teleconnections: How does ENSO affect East Asian climate?, J. Clim., 13, 15171536.
  • Wang, X. L., and V. R. Swail (2001), Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes, J. Clim., 14, 22042221.
  • Webb, R. H., and J. L. Betancourt (1992), Climate variability and flood frequency of the Santa Cruz River, Pima County, Arizona, U.S. Geol. Surv. Water Suppl. Pap., 2379, pp. , 40.
  • Webb, R. H., G. J. McCabe, R. Hereford, and C. Wilkowske (2004), Climatic fluctuations, drought, and flow in the Colorado River Basin, U.S. Geol. Surv. Fact Sheet, 3062-04, 4 pp.
  • Wedgbrow, C. S., R. L. Wilby, H. R. Fox, and G. O'Hare (2002), Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales, Int. J. Climatol., 22(2), 219236.
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata (2007), Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer, Clim. Dyn., 29(2–3), 113129, doi:10.1007/s00382-00007-00234-00380.
  • Wilson, L. (1973), Variations in mean annual sediment yield as a function of mean annual precipitation, Am. J. Sci., 273, 335349.
  • Xu, Z. X., K. Takeuchi, and H. Ishidaira (2004), Correlation between El Nino-Southern Oscillation (ENSO) and precipitation in South-east Asia and the Pacific region, Hydrol. Process., 18, 107123.
  • Yu, X., and S.-Y. Liong (2007), Forecasting of hydrologic time series with ridge regression in feature space, J. Hydrol., 332, 290302.