SEARCH

SEARCH BY CITATION

References

  • Brooks, N. H., and A. Shukry (1963), Discussion of “Boundary shear stress in curved trapezoidal channels, edited by A. T. Ippen, and P. A. Drinker, J. Hydraul. Div. Am. Soc. Civ. Eng., 89(HY3), 327333.
  • Chang, K. S., S. G. Constantinescu, and S. Park (2007), Assessment of predictive capabilities of detached eddy simulation to simulate flow and mass transport past open cavities, J. Fluids Eng., 129, 13721383.
  • Constantinescu, G. S., and K. D. Squires (2003), LES and DES investigations of turbulent flow over a sphere at Re = 10,000, Flow Turbul. Combust., 70, 267298.
  • Constantinescu, G., and K. D. Squires (2004), Numerical investigation of the flow over a sphere in the subcritical and supercritical regimes, Phys. Fluids, 16, 14491467.
  • Constantinescu, G., M. Koken, and J. Zeng (2011a), The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by an eddy resolving numerical simulation, Water Resour. Res., 47, W05515, doi:10.1029/2010WR010114.
  • Constantinescu, G., S. Miyawaki, B. Rhoads, A. Sukhodolov, and G. Kirkil (2011b), Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insights from an eddy-resolving numerical simulation, Water Resour. Res., 47, W05507, doi:10.1029/2010WR010018.
  • Dargahi, B. (1989), The turbulent flow field around a circular cylinder, Exp. Fluids, 8, 112.
  • Devenport, W. J., and R. L. Simpson (1990), Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction, J. Fluid Mech., 210, 2355.
  • Dey, S., and A. K. Barbhuiya (2005), Flow filed at a vertical wall abutment, J. Hydraul. Eng., 131(12), 11261135.
  • Dey, S., and A. K. Barbhuiya (2006a), 3D flow field in a scour hole at a wing-wall abutment, J. Hydraul. Res., 44(1), 3349.
  • Dey, S., and A. K. Barbhuiya (2006b), Velocity and turbulence in a scour hole at a vertical-wall abutment, Flow Meas. Instrum., 17, 1321.
  • Fael, C. M. S., G. Simarro-Grande, J. P. Martin-Vide, and A. H. Cardoso (2006), Local scour at vertical-wall abutments under clear water flow conditions, Water Resour. Res., 42, W10408, doi:10.1029/2005WR004443.
  • Hardy, R. J., S. N. Lane, R. I. Ferguson, and D. R. Parsons (2007), Emergence of coherent flow structures over a gravel surface: A numerical experiment, Water Resour. Res., 43, W03422, doi:10.1029/2006WR004936.
  • Hunt, J. C. R., A. Wary, and P. Moin (1988), Eddies, stream, and convergence zones in turbulent flows, paper presented at 1998 Summer Program, Cent. for Turbul. Res., Stanford, Calif.
  • Hussein, H., and R. J. Martinuzzi (1996), Energy balance for turbulent flow around a surface mounted cube placed in a channel, Phys. Fluids, 8, 764780.
  • Keylock, C. J., R. J. Hardy, D. R. Parsons, R. I. Ferguson, S. N. Lane, and K. S. Richards (2005), The theoretical foundations and potential for large eddy simulation in fluvial geomorphic and sedimentological research, Earth Sci. Rev., 71, 271304.
  • Kirkil, G. (2008), Numerical study of flow, turbulence and scour mechanisms in the flow past cylinders on flat and scoured beds, Ph.D. thesis, Dep. of Civ. and Environ. Eng., Univ. of Iowa, Iowa City.
  • Kirkil, G., and G. Constantinescu (2009), Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion, Water Resour. Res., 45, W06412, doi:10.1029/2008WR007363.
  • Kirkil, G., and G. Constantinescu (2010), Flow and turbulence structure around an in-stream rectangular cylinder with scour hole, Water Resour. Res., 46, W11549, doi:10.1029/2010WR009336.
  • Kirkil, G., S. G. Constantinescu, and R. Ettema (2008), Coherent structures in the flow field around a circular cylinder with scour hole, J. Hydraul. Eng., 134(5), 572587.
  • Kirkil, G., G. Constantinescu, and R. Ettema (2009), DES investigation of turbulence and sediment transport at a circular pier with scour hole, J. Hydraul. Eng., 135(11), 888901.
  • Koken, M. (2011), Comparison of coherent structures around isolated spur dikes at various angles, J. Hydraul. Res., in press.
  • Koken, M., and G. Constantinescu (2008a), An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process, Water Resour. Res., 44, W08406, doi:10.1029/2007WR006489.
  • Koken, M., and G. Constantinescu (2008b), An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 2. Conditions corresponding to the final stages of the erosion and deposition process, Water Resour. Res., 44, W08407, doi:10.1029/2007WR006491.
  • Koken, M., and G. Constantinescu (2009), An investigation of the dynamics of coherent structures in a turbulent channel flow with a vertical sidewall obstruction, Phys. Fluids, 21, 085104, doi:10.1063/1.3207859.
  • Lane, S. N., R. J. Hardy, L. Elliott, and D. B. Ingham (2004), Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment, Water Resour. Res., 40, W01302, doi:10.1029/2002WR001934.
  • Mahesh, K., S. G. Constantinescu, and P. Moin (2004), A numerical method for large eddy simulation in complex geometries, J. Comput. Phys., 197, 215240.
  • Martinuzzi, R., and C. Tropea (1993), The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow, J. Fluids Eng., 115, 8592.
  • Melville, B. W., and S. E. Coleman (2000), Bridge Scour, 550 pp., Water Resour. Publ., Littleton, Colo.
  • Nagata, N., T. Hosoda, T. Nakato, and Y. Muramoto (2005), Three-dimensional numerical model for flow and bed deformation around river hydraulic structures, J. Hydraul. Eng., 131(12), 10741087.
  • Rhoads, B. L., and A. Sukhodolov (2001), Field investigation of three-dimensional structure at stream confluences: 1. Thermal mixing and time averaged velocities, Water Resour. Res., 37(9), 23932410, doi:10.1029/2001WR000316.
  • Rhoads, B. L., and A. Sukhodolov (2004), Spatial and temporal structure of shear-layer turbulence at a stream confluence, Water Resour. Res., 40, W06304, doi:10.1029/2003WR002811.
  • Rodi, R. (1997), Comparison of LES and RANS calculations of the flow around bluff bodies, J. Wind Eng. and Ind. Aerodynamics, 55, 6971.
  • Roulund, A., B. M. Sumer, J. Fredsoe, and J. Michelsen (2005), Numerical and experimental investigation of flow and scour around a circular pile, J. Fluid Mech., 534, 351.
  • Shah, K. B., and J. H. Ferziger (1997), A fluid mechanicians view of wind engineering: Larger eddy simulation of flow past a cubic obstacle, J. Wind, Eng. and Ind. Aerodynamics, 67/68, 211224.
  • Spalart, P. R. (2000), Trends in turbulence treatments, AIAA Paper 2000–2306, paper presented at the 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev.
  • Sterling, M., F. Beaman, H. Morvan, and N. Wright (2008), Bed-shear stress characteristics of simple, prismatic rectangular channel, J. Hydraul. Eng., 134(12), 10851094.
  • Unger., J., and W. H. Hager (2007), Downflow and horseshoe vortex characteristics of sediment embedded bridge piers, Exp. Fluids, 42, 119.
  • Zeng, J., G. Constantinescu, and L. Weber (2008), A 3D non-hydrostatic model to predict flow and sediment transport in loose-bed channel bends, J. Hydraul. Res., 46(3), 356372.
  • Zeng, J., G. Constantinescu, and L. Weber (2010), 3D calculations of equilibrium conditions in loose-bed open channels with significant suspended sediment load, J. Hydraul. Eng., 136(9), 557571.