SEARCH

SEARCH BY CITATION

References

  • Al-Bazali, T. M. (2005), Experimental study of the membrane behavior of shale during interaction with water-based and oil-based muds, Ph.D. thesis, Univ. of Texas, Austin.
  • Ambert, M., and P.Ambert (1995), Karstification des plateaux et encaissement des vallées au cours du Néogène et du Quaternaire dans les Grands Causses méridionaux (Larzac, Blandas), Géologie de la France, 4, 3750.
  • Avena, M. J., and C. P.De Pauli (1998), Proton adsorption and electrokinetics of an Argentinean montmorillonite, J. Colloid Interface Sci., 202, 195204.
  • Bertrand, L., R.Laviguerie, J.Cabrera, J. M.Matray, and S.Savoye (2002), Instrument for measuring pore pressure and permeability in low permeability rock, paper presented at 1st International Meeting on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, December 9–12 2002, ANDRA, Reims, France.
  • Boisson, J.-Y. (2005), Clay club catalogue of characteristics of argillaceous rocks, Nuclear Energy Agency Rep. 4436, Organisation for Economic Co-operation and Development OECD, Issy-les-Moulineaux, France.
  • Boisson, J. Y., L.Bertrand, J. F.Heitz, and Y.Moreau Le Golvan (2001), In-situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France, Hydrogeol. J., 9, 108123.
  • Bolt, G. H. (1979), Soil Chemistry, B. Physicochemical Models, 480 pp., Elsevier, Amsterdam, Netherlands.
  • Bresler, E. (1973), Anion exclusion and coupling effects in nonsteady transport unsaturated soils: I. Theory, Soil Sci. Soc. Am. Proc., 37(5), 663669.
  • Cey, B. D., S. L.Barbour, and M. J.Hendry (2001), Osmotic flow through a Cretaceous clay in southern Saskatchewan, Canada, Can. Geotech. J., 38(5), 10251033.
  • Chilingar, G. V., V. A.Serebryakov, and J. O. J.Robertson (2002), Origin and Prediction of Abnormal Formation Pressures, Developments in Petroleum Science, vol. 50, 373 pp., Elsevier, Amsterdam, Netherlands.
  • Davies, C. W. (1962), Ion Association, 190 pp., Butterworths, Washington, D. C.
  • deMarsily, G. (1986), Quantitative Hydrogeology, Groundwater Hydrology for Engineers, 440 pp., Academic, N. Y.
  • Fritz, S. J. (1986), Ideality of clay membranes in osmotic processes: A review, Clays Clay Miner., 34(2), 214223.
  • Gaines, G. I., and H. C.Thomas (1953), Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption, J. Phys. Chem., 21, 714718.
  • Garavito, A. M., H.Kooi, and C. E.Neuzil (2006), Numerical modeling of a long-term in situ chemical osmosis experiment in the Pierre Shale, South Dakota, Adv. Water Resour., 29, 481492.
  • Garavito, A. M., I.De Cannière, and H.Kooi (2007), In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory, Phys. Chem. Earth, 32, 421433.
  • Gaucher, E., et al. (2006), Modelling the porewater chemistry of the CallovianOxfordian formation at a regional scale, Comptes Rendus Geoscience, 338, 917930.
  • Gonçalvès, J., S.Violette, and J.Wending (2004), Analytical and numerical solutions for alternative overpressuring processes: Application to the Callovo-Oxfordian sedimentary sequence in the Paris basin, France, J. Geophys. Res., 109, B02110, doi:10.1029/2002JB002278.
  • Gonçalvès, J., P.Rousseau-Gueutin, and A.Revil (2007), Introducing interacting diffuse layers in TLM calculations. A reappraisal of the influence of the pore size on the swelling pressure and the osmotic efficiency of compacted bentonites, J. Colloid Interface Sci., 316, 9299.
  • Gonçalvès, J., P.Rousseau-Gueutin, G.deMarsily, P.Cosenza, and S.Violette (2010), What is the significance of pore pressure in a saturated shale layer?, Water Resour. Res., 46, W04514, doi:10.1029/2009WR008090.
  • Hendry, M. J., and L.Wassenaar (1999), Implications of the distribution of δD in porewaters of groundwater flow and the timing of geological events in a thick aquitard system, Water Resour. Res., 35(6), 17511760.
  • Horseman, S. T., J. J. W.Higgo, J.Alexander, and J. F.Harrington (1996), Water, gas and solute movement trough argillaceous media, Nuclear Energy Agency (NEA), a subgroup of the NEA Co-ordinating Group on Site Evaluation and Design of Experiments for Radioactive Waste Disposal (SEDE), Rep. 96/1 OECD, 290 pp., Paris, France.
  • Horseman, S. T., J. F.Harrington, and D. J.Noy (2007), Swelling and osmotic flow in a potential host rock, Phys. Chem. Earth, 32, 408420.
  • Kemper, W. D., and J. B.Rollins (1966), Osmotic efficiency coefficients across compacted clays, Soil Sci. Soc. Am. Proc., 30(5), 529534.
  • Langmuir, D. (1997), Aqueous Environmental Geochemistry, 600 pp., Prentice Hall, Upper Saddle River, N. J.
  • Lee, Y., and D.Deming (2002), Overpressures in the Anadarko Basin, Southwestern Oklahoma: Static or dynamic?, AAPG Bull., 86, 145160.
  • Leroy, P., and A.Revil (2004), A triple-layer model of the surface electrochemical properties of clay minerals, J. Colloid Interface Sci., 270, 371380.
  • Leroy, P., A.Revil, S.Altmann, and C.Tournassat (2007), Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France), Geochim. Cosmochim. Acta, 71, 10871097, doi:10.1016/j.gca.2006.11.009.
  • Magara, K. (1980), Comparison of porosity-depth relationships of shale and sandstone, J. Pet. Geol., 3, 175185.
  • Marine, I. W., and S. J.Fritz (1981), Osmotic model to explain anomalous hydraulic heads, Water Resour. Res., 17(1), 7382.
  • Matray, J. M., S.Savoye, and J.Cabrera (2007), Desaturation and structure relationships around drifts excavated in the well-compacted Tournemire's argillite (Aveyron, France), Eng. Geol., 9, 116.
  • Mazurek, M., et al. (2011), Natural tracer profiles across argillaceous formations, Appl. Geochem., 26, 10351064.
  • Mitchell, J. K., and K.Soga (2005), Fundamentals of Soil Behavior, 3rd ed., 558 pp., John Wiley, N. Y.
  • Neuzil, C. E. (1994), How permeable are clays and shales?, Water Resour. Res., 30(2), 145150, doi:10.1029/93WR02930.
  • Neuzil, C. E. (1995), Abnormal pressures as hydrodynamic phenomena, Am. J. Sci., 295, 742786.
  • Neuzil, C. E. (2000), Osmotic generation of “anomalous” fluid pressures in geological environments, Nature, 403, 182184.
  • Neuzil, C. E. (2003), Hydromechanical coupling in geologic processes, Hydrogeol. J., 11, 4183.
  • Neuzil, C. E., and A. M.Provost (2009), Recent experimental data may point to a greater role for osmotic pressures in the subsurface, Water Resour. Res., 45, W03410, doi:10.1029/2007WR006450.
  • Patriarche, D., E.Ledoux, J.-L.Michelot, R.Simon-Coinçon, and S.Savoye (2004), Diffusion as the main process for mass transport in very low water content argillites: 2. Fluid flow and mass transport modeling, Water Resour. Res., 40, W01517, doi:10.1029/2003WR002700.
  • Pearson, F. J., et al. (2003), Geochemistry of water in the Opalinus clay formation at the Mont Terri rock laboratory, Technical Rep. 2003-03, Mont Terri Project, Swiss Federal Office for Water and Geology, Bern, Germany.
  • Peyaud, J. B., J.Barbarand, A.Carter, and M.Pagel (2005), Mid-Cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction, Int. J. Earth Sci., 94, 46247.
  • Revil, A., and P.Leroy (2004), Constitutive equations for ionic transport in porous shales, J. Geophys. Res., 109, B03208, doi:10.1029/2003JB002755.
  • Rousseau-Gueutin, P., V.deGreef, J.Gonçalvès, S.Violette, and S.Chanchole (2009), Experimental device for chemical osmosis measurement on natural clay-rock samples maintained at in-situ conditions. Implications for pressure interpretation, J. Colloid Interface Sci., 337, 106116.
  • Rousseau-Gueutin, P., J.Gonçalvès, M.Cruchaudet, G.deMarsily, and S.Violette (2010), Hydraulic and chemical pulse-tests in a shut-in chamber imbedded in an argillaceous formation: Numerical and experimental approaches, Water Resour. Res., 46, W08516, doi:10.1029/2008WR007371.
  • Shackelford, C. D., and J. M.Lee (2003), The destructive role of diffusion on clay membrane behavior, Clays Clay Miner., 51, 186196.
  • Simon-Coinçon, R., and J. M.Schmitt (1999), Evolution géologique et histoire paléoenvironnementale du bassin des grands causses, Rapport technique LHM/RD/99/52, Centre d'Information Géologique, Ecole Nationale Supérieure des Mines deParis, France.
  • Swarbrick, R., and M.Osborne (1998), Mechanisms that generate abnormal pressures: an overview, in Abnormal Pressures in Hydrocarbon Environments, edited by B. E.Law et al., pp. 1334, AAPG Memoir 70, Golden, Colo.
  • Tremosa, J. (2010), Influence of osmotic processes on the excess-hydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire, Ph.D. thesis, Université Pierre et Marie Curie, Paris 6, France.
  • Tremosa, J., J.Gonçalvès, J. M.Matray, and S.Violette (2010), Estimating thermo-osmotic coefficients in clay-rocks: II. In situ experimental approach, J. Colloid Interface Sci., 342, 175184.
  • Tremosa, J., D.Arcos, J. M.Matray, F.Bensenouci, E. C.Gaucher, C.Tournassat, and J.Hadi (2012), Geochemical characterization and modelling of the Toarcian/Domerian porewater at the Tournemire underground research laboratory, Appl. Geochem., doi:10.1016/j.apgeochem.2012.01.005, in press.
  • Vinsot, A., S.Mettler, and S.Wechner (2008), In situ characterization of the Callovo-Oxfordian pore water composition, Phys. Chem. Earth, 33, S75S86.
  • Walsh, J. B., and W. F.Brace (1984), The effect of pressure on porosity and the transport properties of rocks, J. Geophys. Res., 89, 94259431.
  • Young, A., and P.Low (1965), Osmosis in argillaceous rocks, AAPG Bull., 49, 10041008.