SEARCH

SEARCH BY CITATION

References

  • Accornero, M., L.Marini, G.Ottonello, and M.Vetuschi Zuccolini (2005), The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters, Appl. Geochem., 20, 13681390, doi:10.1016/j.apgeochem.2005.03.001.
  • Acero, P., C.Ayora, C.Torrentó, and J. M.Nieto (2006), The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite, Geochim. Cosmochim. Acta, 70, 41304139, doi:10.1016/j.gca.2006.06.1367.
  • Allison, J. D., D. S.Brown, and K. J.Novo-Gradac (1990), MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems, version 3.0, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Ga., 106 pp.
  • Audry, S., G.Blanc, and J.Schäfer (2005), The impact of sulphide oxidation on dissolved metal (Cd, Zn, Cu, Cr, Co, Ni, U) inputs into the Lot–Garonne fluvial system (France), Appl. Geochem., 20, 919931. doi:10.1016/j.apgeochem.2005.01.006.
  • Berger, A. C., C. M.Bethke, and M. L.Krumhansl (2000), A process model of natural attenuation in drainage from a historic mining district, Appl. Geochem., 15, 655666.
  • Bigham, J. M., U.Schwertmann, S. J.Traina, R. L.Winland, and M.Wolf (1996), Schwertmannite and the chemical modeling of iron in acid sulfate waters, Geochim. Cosmochim. Acta, 60(12), 21112121.
  • Cánovas, C. R. (2009), La calidad del agua de los ríos Tinto y Odiel, Evolución temporal y factores condicionantes de la movilidad de los metales, Ph.D. thesis, University of Huelva, Huelva, Spain. [Available via http://hdl.handle.net/10272/604.]
  • Cánovas, C. R., M.Olias, J. M.Nieto, A. M.Sarmiento, and J. C.Cerón (2007), Hydrogeochemical characteristics of the Odiel and Tinto rivers (SW Spain), Factors controlling metal contents, Sci. Total Environ., 373, 363382, doi:10.1016/j.scitotenv.2006.11.022.
  • Cánovas, C. R., C. G.Hubbard, M.Olías, J. M.Nieto, S.Black, and M. L.Coleman (2008), Hydrochemical variations and contaminant load in the Río Tinto (Spain) during flood events, J. Hydrol., 350(1–2), 2440, doi:10.1016/j.jhydrol.2007.11.022.
  • Cánovas, C. R., M.Olías, J. J.Nieto, and L.Galván (2010), Wash-out processes of evaporitic sulfate salts in the Tinto River: Hydrogeochemical evolution and environmental impact, Appl. Geochem., 25, 288301, doi:10.1016/j.apgeochem.2009.11.014.
  • Carrera, J., E.Vázquez-Suñé, O.Castillo, and X.Sánchez-Vila (2004), A methodology to compute mixing ratios with uncertain end-members, Water Resour. Res., 40, W12101, doi:10.1029/2003WR002263.
  • Coynel, A., J.Schäfer, G.Blanc, and C.Bossy (2007), Scenario of particulate trace metal and metalloid transport during a major flood event inferred from transient geochemical signals, Appl. Geochem., 22, 821836.
  • Dill, H. G. (2010), The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium, Earth Sci. Rev., 100, 1420, doi:10.1016/j.earscirev.2009.10.011.
  • Fukushi, K., M.Sasaki, T.Sato, N.Yanase, H.Amano, and H.Ikeda (2003), A natural attenuation of arsenic in drainage from an abandoned mine dump, Appl. Geochem., 18, 12671278, doi:10.1016/S0883-2927(03)00011-8.
  • Galán, E., J. L.Gómez-Ariza, I.González, J. C.Fernández-Caliani, E.Morales, and I.Giráldez (2003), Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt, Appl. Geochem., 18, 409421.
  • Garbarino, J. R., and G. L.Hoffman (1999), Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory, Comparison of a nitric acid in-bottle digestion procedure to other whole-water digestion procedures, Open File Rep. 99-094, U.,S. Geological Survey, Denver, Colo.
  • García de Miguel, J. M. (1990), Mineralogía, paragénesis y sucesión de los sulfuros masivos de la Faja Pirítica en el suroeste de la Península Ibérica, Bol. Geol. Min., 101, 73105.
  • Hoffman, G. L., M. J.Fishman, and J. R.Garbarino (1996), Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory, In-bottle acid-digestion of whole-water samples, Open-File Rep. 96-225, U. S. Geological Survey, Denver, Colo.
  • Kimball, B. A., D. M.McKnight, G. A.Wetherbee, and R. A.Harnish (1992), Mechanisms of iron photoreduction in a metal-rich acidic stream (St. Kevin Gulch, Colorado, U.S.A.), Chem. Geol., 96, 227239.
  • Kimball, B. A., R. L.Runkell, K.Walton-Day, and K. E.Benkala (2002), Assesment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA, Appl. Geochem., 17, 11831207.
  • Langmuir, D. (1997), Aqueous Environmental Geochemistry, 611 pp., Prentice Hall, Upper Saddle River, N. J.
  • Murad, E., and P.Rojik (2003), Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy, Am. Mineral., 88, 19151918.
  • Nieto, J. M., A. M.Sarmiento, M.Olías, C. R.Cánovas, I.Riba, J.Kalman, and T. A.Delvalls (2007), Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary, Environ. Int., 33, 445455, doi:10.1016/j.envint.2006.11.010.
  • Nocete, F., E.Alex, J. M.Nieto, R.Sáez, and M. R.Bayona (2005), An archaelogical approach to regional environmental pollution in the south-western Iberian Peninsula related to Third millenium BC mining and metallurgy, J. Archaeol. Science, 32(10), 15661576, doi:10.1016/j.jas.2005.04.012.
  • Nordstrom, D. K., and F. D.Wilde (1998), Reduction–oxidation potential (electrode method), in National Field Manual for the Collection of Water Quality Data, book 9, chapter 6.5, 20 pp., U.S. Geological Survey techniques of water-resources investigations, U.S. Geological Survey, Reston, Va.
  • Olías, M., J. M.Nieto, A. M.Sarmiento, J. C.Cerón, and C. R.Cánovas (2004), Seasonal water quality variations in a river affected by acid mine drainage: The Odiel river (south west Spain), Sci. Total Environ., 333, 267281, doi:10.1016/j.scitotenv.2004.05.012.
  • Olías, M., C. R.Cánovas, J. M.Nieto, and A. M.Sarmiento (2006), Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain), Appl. Geochem., 21, 17331749, doi:10.1016/j.apgeochem.2006.05.009.
  • Parkhurst, D. L., and C. A. J.Appelo (1999), User's guide to PHREEQC (eersion 2), A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water Resources Investigations Rep. 99-4259, Denver, Colo.
  • Pinedo, I. (1963), Piritas de Huelva, in Su Historia, Minería y Aprovechamiento, 1003 pp., Summa, Madrid, Spain.
  • Ruiz, M. J., R.Carrasco, R.Pérez-López, A. M.Sarmiento, and J. M.Nieto (2003), Optimización del análisis de elementos mayores y traza mediante UN-ICP-OES en muestras de drenaje ácido de mina, Proceedings IV Iberian Geochemical Meeting, 14–18 July, pp. 402404, Universidade de Coimbra, Portugal.
  • Sainz, A., J. A.Grande, and M. L.de laTorre (2004), Characterisation of heavy metal discharge into the Ria of Huelva, Environ. Int., 30, 557566, doi:10.1016/j.envint.2003.10.013.
  • Sánchez-España, J. (2007), The behavior of iron and aluminum in acid mine drainage: Speciation, mineralogy, and environmental significance, in Thermodynamics, Solubility and Environmental Issues, edited by T. M.Letcher, pp. 137150, Elsevier, N. Y.
  • Sánchez España, J., E.Lopez Pamo, E.Santofimia, O.Aduvire, J.Reyes, and D.Barettino (2005), Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications, Appl. Geochem., 20, 13201356, doi:10.1016/j.apgeochem.2005.01.011.
  • Sánchez-España, J., E.López-Pamo, E.Santofimia, J.Reyes, and J. A.Martín-Rubí (2006), The impact of acid mine drainage on the water quality of the Odiel River (Huelva, Spain): Evolution of precipitate mineralogy and aqueous geochemistry along the Concepción-Tintillo segment, Water Air Soil Poll., 173, 121149, doi:10.1007/s11270-005-9033-6.
  • Sánchez-España, J., E.López-Pamo, E.Santofimia, and M.Diez-Ercilla (2008), The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry, Appl. Geochem., 23, 12601287, doi:10.1016/j.apgeochem.2007.12.036
  • Sarmiento, A. M. (2008), Study of the pollution by acid mine drainage of the surface waters in the Odiel basin (SW Spain), M.S. thesis, Department of Geology, University of Huelva, Spain, UMI ProQuest, publ. AAT 3282346. Ann Arbor, Mich., available at http://proquest.umi.com/pqdweb?did=1404342661&sid=3&Fmt=2&clientId=40400&RQT=309&VName=PQD.
  • Sarmiento, A. M., M.Olías, J. M.Nieto, and C. R.Cánovas (2009), Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain), Appl. Geochem., 24, 697714, doi:10.1016/j.apgeochem.2008.12.025.
  • Yu, J. Y., B.Heo, I. K.Choi, J. P.Cho, and H. W.Chang (1999), Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage, Geochim. Cosmochim. Acta, 63(19/20), 34073416.