SEARCH

SEARCH BY CITATION

References

  • Allen-King, R. M., R. M.Halket, D. R.Gaylord, and M. J. L.Robin (1998), Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach, Water Resour. Res., 34(3), 385396.
  • Anderton, R. (1985), Clastic facies models and facies analysis, in Sedimentology, Recent Developments and Applied Aspects, edited by P. J.Brenchley and B. P. J.William, pp. 3147, Blackwell Sci., Oxford, U. K.
  • Beckie, R., and C. F.Harvey (2002), What does a slug test measure: An investigation of instrument response and the effects of heterogeneity, Water Resour. Res., 38(12), 1290, doi:10.1029/2001WR001072.
  • Butler, J. J., Jr. (2005), Hydrogeological methods for estimation of hydraulic conductivity, in Hydrogeophysics, edited by Y.Rubin and S.Hubbard, pp. 2358, Springer, Dordrecht, Netherlands.
  • Chapelle, F. H. (2001), Ground-Water Microbiology and Geochemistry, John Wiley, New York.
  • Chen, J., S.Hubbard, and Y.Rubin (2001), Estimating hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model, Water Resour. Res., 37(6), 16031613.
  • Chen, J., S.Hubbard, Y.Rubin, C.Murray, E.Roden, and E.Majer (2004), Geochemical characterization using geophysical data: A case study at the South Oyster Bacterial Transport Site in Virginia, Water Resour. Res., 40, W12412, doi:10.1029/2003WR002883.
  • Chen, J., S. S.Hubbard, V.Korneev, D.Gaines, G.Baker, and D.Watson (2010), Stochastic inversion of seismic refraction data for estimating watershed-scale aquifer geometry: Development and application to a contaminated aquifer, Water Resour. Res., 46, W11539, doi:10.1029/2009WR008715.
  • Day-Lewis, F. D., K.Singha, and A. M.Binley (2005), Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations, J. Geophys. Res., 110, B08206, doi:10.1029/2004JB003569.
  • deMarsily, G., F.Delay, J.Gonçalv, P.Renard, V.Teles, and S.Violette (2005), Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161183.
  • Denham, M., and K. M.Vangelas (2009), Biogeochemical gradients as a framework for understanding waste-site evolution, Remediation, 19, 517.
  • Denham, M. E. (1999), SRS geology/hydrogeology environmental information document, Rep. WSRC-TR-95-0046, Savannah River Lab., Aiken, S. C.
  • Deutsch, C. V., and A. G.Journel (1998), GSLIB: Geostatistical Software Library and User's Guide, 2nd ed., Oxford Univ. Press, Oxford, U. K.
  • Dong, W., T.Tokunaga, J.Davis, and J.Wan (2012), Uranium(VI) adsorption and surface complexation modeling under acidic conditions: Background sediments from the F-Area Savannah River Site, Environ. Sci. Technol., 46(2), 15651571, doi:10.1021/es2036256.
  • Efron, B., and R. J.Tibshirani (1993) An Introduction to the Bootstrap, Chapman and Hall, London.
  • Eggleston, J., and S.Rojstaczar (1998), Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resour. Res., 34(9), 21552168.
  • Falivene, O., P.Arbues, A.Gardiner, J. A.Munoz, and L.Cabrera (2006), Best practice stochastic facies modeling from a channel-fill turbidite sandstone analog (the Quarry outcrop, Eocene Ainsa basin, northeast Spain), AAPG Bull., 90, 10031029.
  • Ferré, T. P. A., A.Binley, J.Geller, E.Hill, and T.Illangasekare (2005), Hydrogeophysical methods at the laboratory scale, in Hydrogeophysics, edited by Y.Rubin and S. S.Hubbard, pp. 441463, Springer, Dordrecht, Netherlands.
  • Fogg, G. E., C. D.Noyes, and S. F.Carle (1998), Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting, Hydrogeol. J., 6, 131143.
  • Freeze, A. R., and J. A.Cherry (1979), Groundwater, Prentice Hall, Englewood Cliffs, N. J.
  • Ge, Y., and W.Hendershot (2004), Evaluation of soil surface charge using the back-titration technique, Soil Sci. Soc. Am. J., 68, 8288.
  • Gerilynn, R., Z.Moline, and J. M.Bahr (1995), Estimating spatial distributions of heterogeneous subsurface characteristics by regionalized classification of electrofacies, Math. Geol., 27(1), 322.
  • Glassley, W. E., A. M.Simmons, and J. R.Kercher (2002), Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models, Appl. Geochem., 17, 699708.
  • Gohn, G. S. (1988), Late Mesozoic and early Cenozoic geology of the Atlantic coastal plains; North Carolina to Florida, in The Geology of North America, vol. I-2, The Atlantic Coastal Margin: US, edited by R. E.Sheridan and J. A.Grow, pp. 107130, Geol. Soc. of Am., Boulder, Colo.
  • Hamm, L. L., M. K.Harris, P. A.Thayer, J. S.Haselow, and A. D.Smits (1996), Groundwater flow and tritium migration from the SRS Old Burial Ground to Four Mile Branch, Rep. WSRC-TR-0037, Savannah River Lab., Aiken, S. C.
  • Heidmann, I., I.Christl, C.Leu, and R.Kretzschmar (2005), Competitive sorption of protons and metal cations onto kaolinite: Experiments and modeling, J. Colloid Interface Sci., 282(2), 270282.
  • Heinz, J., S.Kleineidam, G.Teutsch, and T.Aigner (2003), Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): Application to hydrogeology, Sediment. Geol., 158(1–2), 123.
  • Hubbard, S., and N.Linde (2010), Hydrogeophysics, in Treatise on Water Science, vol. 2, edited by S.Uhlenbrook, chap. 20, pp. 401434, Elsevier, Amsterdam.
  • Hubbard, S. S., J.Chen, J.Peterson, E. L.Majer, K. H.Williams, D. J.Swift, B.Mailloux, and Y.Rubin (2001), Hydrogeological characterization of the South Oyster Bacterial Transport Site using geophysical data, Water Resour. Res., 37(10), 24312456.
  • Hubbard, S. S., K.Williams, M.Conrad, B.Faybishenko, J.Peterson, J.Chen, P.Long, and T.Hazen (2008), Geophysical monitoring of hydrological and biogeochemical transformations associated with Cr(VI) biostimulation, Environ. Sci. Technol., 42(10), 37573765, doi:10.1021/es071702s.
  • Hyndman, D. W., and S. M.Gorelick (1996), Estimating lithologic and transport properties in three dimensions using seismic and tracer data: The Kesterson aquifer, Water Resour. Res., 32(9), 26592670.
  • Jean, G. A., J. M.Yarus, G. P.Flach, M. R.Millings, M. K.Harris, R. L.Chambers, and F. H.Syms (2004), Three-dimensional geologic model of southeastern Tertiary coastal-plain sediments, Savannah River Site, South Carolina: An applied geostatistical approach for environmental applications, Environ. Geosci., 11(4), 205220.
  • Killian, T. H., N. L.Kolb, P.Corbo, and I. W.Marine (1986), Environmental information document, F-Area Seepage basins, Rep. DPST 85-704, Savannah River Lab., Aiken, S. C.
  • Kleineidam, S., H.Rügner, and P.Grathwohl (1999), Influence of petrographic composition/organic matter distribution of fluvial aquifer sediments on the sorption of hydrophobic contaminants, Sediment. Geol., 129(3–4), 311325.
  • Klingbeil, R., S.Kleineidam, U.Asprion, T.Aigner, and G.Teutsch (1999), Relating lithofacies to hydrofacies: Outcrop-based hydrogeological characterization of Quaternary gravel deposits, Sediment. Geol., 129, 299310.
  • Kohonen, T., J.Hynninen, J.Kangas, and J.Laaksonen (1996), SOM_PAK: The Self-Organizing Map Program Package, Tech. Rep. A31, Lab. of Comput. and Inf. Sci., Helsinki Univ. of Technol., Espoo, Finland.
  • Koltermann, C. F., and S. M.Gorelick (1996), Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 32(9), 26172658.
  • Li, L., C. I.Steefel, M. B.Kowalsky, A.Englert, and S.Hubbard (2010), Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado, J. Contam. Hydrol., 112, 4563.
  • Linde, H., S.Finsterle, and S.Hubbard (2006), Inversion of hydrological tracer test data using tomographic constraints, Water Resour. Res., 42, W04410, doi:10.1029/2004WR003806.
  • Looney, B. B., J. W.Fenimore, and J. H.Horton (1972), Operating history and environmental effects of seepage basins in chemical separations areas of the Savannah River plant, Rep. DPST-72-548, Savannah River Site, Westinghouse Savannah River Co., Aiken, S. C.
  • Michael, H. A., H.Li, A.Boucher, J.Caers, and S. M.Gorelick (2010), Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity, Water Resour. Res., 46, W05527, doi:10.1029/2009WR008414.
  • Molz, F. J., G. K.Bowman, S. C.Young, and W. R.Waldrop (1994), Borehole flowmeters-field application and data analysis, J. Hydrol., 163, 347371.
  • Moysey, S., K.Singha, and R.Knight (2005), A framework for inferring field-scale rock physics relationships through numerical simulation, Geophys. Res. Lett., 32, L08304, doi:10.1029/2004GL022152.
  • Neal, A. (2004), Ground-penetrating radar and its use in sedimentology: Principles, problems and progress, Earth Sci. Rev., 66, 261330.
  • Ott, R. L., and M. T.Longnecker (2001), An Introduction to Statistical Methods and Data Analysis, 5th ed., Duxbury, Pacific Grove, Calif.
  • Paasche, H., J.Tronicke, K.Holliger, A. G.Green, and H.Maurer (2006), Integration of diverse physical-property models: Subsurface zonation and petrophysical parameter estimation based on fuzzy c-means cluster analyses, Geophysics, 71(3), H33H44.
  • Peterson, J. E., Jr. (2001), Pre-inversion corrections and analysis of radar tomographic data, J. Environ. Eng. Geophys., 6(1), 118.
  • Peterson, J. E., B. N. P.Paulson, and T. V.McEvilly (1985), Applications of algebraic reconstruction to crosshole seismic data, Geophysics, 50, 5561580.
  • Poeter, E., and D. R.Gaylord (1990), Influence of aquifer heterogeneity on contaminant transport at the Hanford Site, Ground Water, 28(6), 900909.
  • R Development Core Team (2010), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna.
  • Reading, H. G., and B. K.Lovell (1996), Controls on the sedimentary rock record, in Sedimentary Environments: Processes, Facies, and Stratigraphy, edited by H. G.Reading, pp. 537, Blackwell Sci., Cambridge, Mass.
  • Rubin, Y., and S. S.Hubbard (2005), Hydrogeophysics, 523 pp., Springer, New York.
  • Sangree, J. B., and J. M.Widmier (1979), Interpretation of depositional facies from seismic data, Geophysics, 44(2), 131160.
  • Scheibe, T., Y.Fang, C. J.Murray, E. E.Roden, J.Chen, Y.Chien, S. C.Brooks, and S. S.Hubbard (2006), Transport and biogeochemical reactions of metals in a physically and chemically heterogeneous aquifer, Geosphere, 2(4), 220235, doi:10.1130/GES00029.1.
  • Seaman, J. C., T.Murphy, and S.Walling (2009), Clay mineralogy of sediment cores collected from the EM-32 applied field research site, report, Savannah River Ecol. Lab., Aiken, S. C.
  • Seeboonruang, U., and T. R.Ginn (2006a), Upscaling heterogeneity in aquifer reactivity via the exposure-time concept: Inverse model, J. Contam. Hydrol., 84, 155177.
  • Seeboonruang, U., and T. R.Ginn (2006b), Upscaling heterogeneity in aquifer reactivity via the exposure-time concept: Forward model, J. Contam. Hydrol., 84, 127154.
  • Serkiz, S. M., W. H.Johnson, and L. M. J.Wile (2007), Environmental availability of uranium in an acidic plume at the Savannah River Site, Vadose Zone J., 6(2), 354362.
  • Sherman, D. M., C. L.Peacock, and C. G.Hubbard (2008) Surface complexation of U(VI) on goethite (alpha-FeOOH), Geochim. Cosmochim. Acta, 72(2), 298310.
  • Slater, L. (2007), Near surface electrical characterization of hydraulic conductivity: From petrophysical properties to aquifer geometries—A review, Surv. Geophys, 28, 169197.
  • Smits, A. D., M. K.Harris, K. L.Hawkins, and G. P.Flach (1997), Integrated hydrogeological model of the general separations area (U), Re. WSRC-TR-96-0399, Savannah River Lab., Aiken S. C.
  • Spycher, N., S.Mukhopadhyay, D.Sassen, H.Murakami, S.Hubbard, J.Davis, and M.Denham (2011), On modeling H+ and U transport behavior in an acidic plume, Mineral. Mag., 75(3), 1925.
  • Strom, R. N., and D. S.Kaback (1992), SRP baseline hydrogeologic investigation: Aquifer characterization, groundwater geochemistry of the Savannah River Site and vicinity, Rep. WSRC-RP–92-450 (DE93 003187), Environ. Sci. Sect., Savannah River Lab., Westinghouse Savannah River Co., Aiken, S. C.
  • Tidwell, V. C., A. L.Gutjahr, and J. L.Wilson (1999), What does an instrument measure? Empirical spatial weighting functions calculated from permeability data sets measured on multiple sample supports, Water Resour. Res., 35(1), 4354.
  • Tronicke, J., K.Holliger, W.Barrash, and M. D.Knoll (2004), Multivariate analysis of cross-hole georadar velocity and attenuation tomograms for aquifer zonation, Water Resour. Res., 40, W01519, doi:10.1029/2003WR002031.
  • vanHelvoort, P.-J., P.Filzmoser, and P. F. M.vanGaans (2005), Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, the Netherlands), Appl. Geochem., 20, 22332251.
  • vanOvermeeren, R. A. (1998), Radar facies of unconsolidated sediments in the Netherlands: A radar stratigraphy interpretation method for hydrogeology, J. Appl. Geophys., 40, 118.
  • Vereecken, H., A.Binley, G.Cassiani, A.Revil, and K.Titov (2006), Applied Hydrogeophysics, NATO Sci. Ser., Ser. IV, Earth Environ. Sci., vol. 71, Springer, Dordrecht, Netherlands.
  • Wan, J., T. K.Tokunaga, W.Dong, M. E.Denham, and S. S.Hubbard (2012), Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: The F-Area Savannah River site, Environ. Sci. Technol., 46(8), 44904497.
  • Xu, T., N.Spycher, E.Sonnenthal, G.Zhang, L.Zheng, and K.Pruess (2011), TOUGHREACT version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Comput. Geosci., 37, 763774.
  • Zappa, G., R.Bersezio, F.Felletti, and M.Giudici (2006), Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale, J. Hydrol., 325, 134153.