SEARCH

SEARCH BY CITATION

References

  • Beven, K. (2002), Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system, Hydrol. Processes, 16(2), 189206.
  • Bonnesen, E., F.Larsen, T. O.Sonnenborg, K.Klitten, and L.Stemmerik (2009), Deep saltwater in Chalk formations of North-West Europe: Origin, interface characteristics and development over geological time, Hydrogeol. J., 17(7), 16431663.
  • Bredehoeft, J. (2005), The conceptualization model problem––surprise, Hydrogeol. J., 13(1), 3746.
  • Cavadias, G., and G.Morin (1986), The combination of simulated discharges of hydrological models, Application to the WMO intercomparison of conceptual models of snowmelt runoff, Nord. Hydrol., 17(1), 2132.
  • DHI Water and Environment (DHI) (2009a), MIKE SHE User manual, vol. 1; user guide, and vol. 2: reference guide, Institut for Vand and Milljo, [Available at http://www.hydroasia.org], DHI, Hørsholm, Denmark.
  • DHI Water and Environment (DHI) (2009b), MIKE 11, A modelling system for rivers and channels, user guide and reference manual, Institut for Vand and Milljo, [Available at http://www.hydroasia.org], DHI, Hørsholm, Denmark.
  • Diks, C. G. H., and J. A.Vrugt (2010), Comparison of point forecast accuracy of model averaging methods in hydrologic applications, Stochastic Environ. Res. Risk Assess., 24(6), 809821.
  • Doherty, J. (2004), PEST, Model-Independent Parameter Estimation, user manual, 5th ed, Watermark Numerical Computing, Brisbane, Australia, available at http://dinooption.com.
  • Doherty, J. (2008), Addendum to the PEST Manual, Watermark Numerical Computing, Brisbane, Australia, available at http://images4.wikia.nocookie.net.
  • Donnelly-Makowecki, L. M., and R. D.Moore (1999), Hierarchical testing of three rainfall-runoff models in small forested catchments, J. Hydrol., 219(3–4), 136152.
  • Henriksen, H. J., L.Troldborg, C.Knudby, M.Dahl, P.Nyegaard, R. P.Jacobsen, and P.Rasmussen (1998), National Vandressource model––Sjælland, Lolland, Falster og Møn, GEUS Rapport 1998/109, Geological Survey of Denmark and Greenland, Copenhagen, Denmark.
  • Henriksen, H. J., L.Troldborg, P.Nyegaard, T. O.Sonnenborg, J. C.Refsgaard, and B.Madsen (2003), Methodology for construction, calibration and validation of a national hydrological model for Denmark, J. Hydrol., 280(1–4), 5271.
  • Hoeting, J. A., D.Madigan, A. E.Raftery, and C. T.Volinsky (1999), Bayesian model averaging: A tutorial, Stat. Sci., 4, 382417.
  • Højberg, A. L., and J. C.Refsgaard (2005), Model uncertainty––parameter uncertainty versus conceptual models, Water Sci. Technol., 52(6), 177186.
  • HøjbergA. L., L.Troldborg, P.Nyegaard, M.Ondraeck, S.Stisen, B. S. B.Christensen, and A.Nørgaard (2008), National Vandressource model–Sjælland, Lolland, Falster og Møn–Opdatering januar, GEUS Rapport 2008/65, Geological Survey of Denmark and Greenland, Copenhagen, Denmark.
  • Japsen, P., T.Bidstrup, and K.Lidmar-Bergström (2002), Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome, in Exhumation of the North Atlantic Margin: Timing, Mechanisms and Implications for Petroleum Exploration, edited by A. G.Doré, et al., pp. 183207, Geological Society, London, U. K.
  • Klemes, V. (1986), Operational testing of hydrological simulation models, Hydrol. Sci. J., 31(1), 1324.
  • Københavns Energi (2005), Grundvandsmodel for kildepladserne under Værket ved Lejre, consulting report by Niras, Sortemosevej 2, DK-3450 Allerød, Denmark.
  • Kuczera, G., G. P.Raper, N. S.Brah, and M. D.Jayasuriya (1993), Modeling yield changes following strip thinning in a mountain ash catchment: An exercise in catchment model validation, J. Hydrol., 150(2–4), 433457.
  • Neuman, S. P. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ. Res. Risk Assess., 17, 291305.
  • Nyholm, T., S.Christensen, and K. R.Rasmussen (2002), Flow depletion in a small stream caused by ground water abstraction from wells, Ground Water, 40(4), 425437.
  • Oreskes, N., K.Shrader-Frechette, and K.Belitz (1994), Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641646.
  • Poeter, E., and D.Anderson (2005), Multiple ranking and inference in ground water modelling. Ground Water, 43(4), 597605.
  • Refsgaard, J. C., and H. J.Henriksen (2004), Modelling guidelines––terminology and guiding principles, Adv. Water Resour., 27, 7182.
  • Refsgaard, J. C., and J.Knudsen (1996), Operational validation and intercomparison of different types of hydrological models, Water Resour. Res., 32(7), 21892202.
  • Refsgaard, J. C., et al. (1998), An integrated model for the Danubian Lowland––methodology and applications, Water Resour. Manage., 12, 433465.
  • Refsgaard, J. C., J. P.van derSluijs, J.Brown, and P.van derKeur (2006), A framework for dealing with uncertainty due to model structure error, Adv. Water Resour., 29(11), 15861597.
  • Refsgaard, J. C., S.Christensen, T. O.Sonnenborg, D.Seifert, A. L.Højberg, and L.Troldborg (2012), Review of strategies for handling geological uncertainty in groundwater flow and transport modeling, Adv. Water Resour., 36, 3650, doi:10.1016/j.advwatres.2011.04.006.
  • Rojas, R., L.Feyen, and A.Dassargues (2008), Conceptual model uncertainty in groundwater modelling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging, Water Resour. Res., 44, W12418, doi:10.1029/2008WR006908.
  • Rojas, R., O.Batelaan, L.Feyen, and A.Dassargues (2010), Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal––North Chile, Hydrol. Earth Syst. Sci., 14, 171192.
  • Roskilde Amt (County) (2002), Grundvandsmodel for Roskilde Amt. Hovedrapport, Consulting report by Watertech (ALECTIA), Teknikerbyen 34, DK-2830 Virum, Denmark.
  • Roskilde Amt (2003), Grundvandsmodel for Roskilde Amt. Modelrevision, Consulting report by Watertech (ALECTIA), Teknikerbyen 34, DK-2830 Virum, Denmark.
  • Sánchez, E., R.Romera, M. A.Gaertner, C.Gallardo, and M.Castro (2009), A weighting proposal for an ensemble of regional climate models over Europe driven by 1961–2000 ERA40 based on monthly precipitation probability density functions, Atmos. Sci. Lett., 10, 241248.
  • Seibert, J. (2003), Reliability of model predictions outside calibration conditions, Nord. Hydrol., 34(5), 477492.
  • Stisen, S., T. O.Sonnenborg, A. L.Højbjerg, L.Troldborg, and J. C.Refsgaard (2011), Evaluation of climate input biases and water balance issues using a coupled surface-subsurface model, Vadose Zone J., 10, 3753.
  • Troldborg, L., J. C.Refsgaard, K. H.Jensen, and P.Engesgaard (2007), The importance of alternative conceptual models for simulation of concentrations in multi-aquifer system, Hydrogeol. J., 15, 843860.
  • Vagstad, N., et al. (2009), Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices, J. Environ. Monit., 11(3), 594601.
  • van derLinden, P., and J. F. B.Mitchell (Eds.) (2009), ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project, 160 pp., available at http://www.ensembles-er.org, Met Office Hadley Centre, Exeter, U. K..
  • Winter, C. L., and D.Nychka (2010), Forecasting skill of model averages, Stochastic Environ. Res. Risk Assess., 24, 633638.