SEARCH

SEARCH BY CITATION

Keywords:

  • rain kinetic energy;
  • raindrop size distribution;
  • rainfall;
  • weather radar

[1] This study offers an approach to estimate the rainfall kinetic energy (KE) by rain intensity (R) and radar reflectivity factor (Z) separately or jointly on the basis of a one- or two-moment scaled raindrop size distribution (DSD) formulation, which contains (1) R and/or Z observations and (2) the dimensionless probability density function (pdf) of a scaled raindrop diameter. The key point is to explain all variability of the DSD by the evolution of the explaining moments (R and Z); hence the pdf is considered as constant. A robust method is proposed to estimate the climatological values of the parameters with a 28 month DSD data set collected in the Cévennes-Vivarais region of France. Three relationships (KE-R, KE-Z, and KE-RZ), which link the observations (R and/or Z) to rainfall kinetic energy (KE), are established. As expected, the assessment using the disdrometer data indicates that (1) because of the proximity of the moment orders, the KE-Z relationship exhibits less variability than the KE-R relationship and (2) the combination of R and Z yields a significant improvement of the estimation of KE compared to the single-moment formulations. Subsequently, a first attempt to spatialize the kinetic energy using radar and rain gauge measurements is presented for a convective event, showing a promising potential for erosion process studies. Different from the application with the disdrometer data, the performance of the KE-Z relationship degrades compared to the KE-R relationship as a result of a bias and/or the sampling characteristics of the radar data.