SEARCH

SEARCH BY CITATION

References

  • Anquetin, S., F. Miniscloux, J. D. Creutin, and S. Cosma (2003), Numerical simulation of orographic rainbands, J. Geophys. Res., 108(D8), 8386, doi:10.1029/2002JD001593.
  • Assouline, S., and Y. Mualem (1989), The similarity of regional rainfall: A dimensionless model of drop size distribution, Trans. ASAE, 32(4), 12161222.
  • Atlas, D., and C. W. Ulbrich (1977), Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band, J. Appl. Meteorol., 16, 13221331.
  • Beard, K. V. (1976), Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 23, 851864.
  • Best, A. (1950), The size distribution of raindrops, Q. J. R. Meteorol. Soc., 76, 1636.
  • Boudevillain, B., G. Delrieu, B. Galabertier, L. Bonnifait, L. Bouilloud, P. E. Kirstetter, and M. L. Mosini (2011), The Cévennes-Vivarais Mediterranean hydrometeorological observatory database, Water Resour. Res., 47, W07701, doi:10.1029/2010WR010353.
  • Delrieu, G., et al. (2005), The catastrophic flash-flood event of 8-9 September 2002 in the Gard region, France: A first case study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeorol., 6(1), 3452.
  • Erpul, G., L. D. Norton, and D. Gabriels (2003), The effect of wind on raindrop impact and rainsplash detachment, Trans. ASAE, 46, 5162.
  • Fornis, R. L., H. R. Vermeulen, and J. D. Nieuwenhuis (2005), Kinetic energy-rainfall intensity relationship for central Cebu, Philippines for soil erosion studies, J. Hydrol., 300, 2032.
  • Fox, I. N. (2004), The representation of rainfall drop-size distribution and kinetic energy, Hydrol. Earth Syst. Sci., 8(5), 10011007.
  • Gossard, E. E., R. G. Strauch, D. C. Welsh, and S. Y. Matrosov (1992), Cloud layers, particle identification, and rain-rate profiles from ZRVf measurements by clear-air Doppler radars, J. Atmos. Oceanic Technol., 9(2), 108119.
  • Gunn, R., and G. Kinzer (1949), The terminal velocity of fall for water droplets in stagnant air, J. Appl. Meteorol., 6, 243248.
  • Hazenberg, P., N. Yu, B. Boudevillain, G. Delrieu, and R. Uijlenhoet (2011), Scaling of raindrop size distributions and classification of radar reflectivity–rain rate relations in intense Mediterranean precipitation, J. Hydrol., 402, 179192.
  • Illingworth, A. J., and T. M. Blackman (2002), The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations, J. Appl. Meteorol., 41(3), 286297.
  • Intergovernmental Panel on Climate Change (2007), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by M. L. Parry et al., 976 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Jaffrain, J., and A. Berne (2011), Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers, J. Hydrometeorol., 12(3), 352370
  • Kinnell, P. I. A. (1973), The problem of assessing the erosive power of rainfall from meteorological observations, Soil Sci. Soc. Am. Proc., 37, 617621.
  • Laflen, J. M., W. J. Elliot, D. C. Flanagan, C. R. Meyer, and M. A. Nearing (1997), WEPP predicting water erosion using a process-based model, J. Soil Water Conserv., 52(2), 96102.
  • Lee, G. W., I. Zawadzki, W. Szyrmer, D. Sempere Torres, and R. Uijlenhoet (2004), A general approach to double-moment normalization of drop size distributions, J. Appl. Meteorol., 43(2), 264281.
  • Mihara, Y. (1951), Raindrops and soil erosion, Bull. Natl. Inst. Agric. Sci., Ser. A, 1, 4851.
  • Morgan, R. P. C., J. N. Quinton, R. E. Smith, G. Govers, J. W. A. Poesen, K. Auerswald, G. Chisci, D. Torri, and M. E. Styczen (1998), The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments, Earth Surf. Processes Landforms, 23, 527544.
  • Mualem, Y., and S. Assouline (1986), Mathematical model for rain drop distribution and rainfall kinetic energy, Trans. ASAE, 29(2), 494500.
  • Nuissier, O., V. Ducrocq, D. Ricard, C. Lebeaupin, and S. Anquetin (2008), A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients, Q. J. R. Meteorol. Soc., 134, 111130.
  • Porrá, J. M., D. Sempere Torres, and J. D. Creutin (1998), Modeling of drop size distribution and its applications to rainfall measurements from radar, in Stochastic Methods in Hydrology, Adv. Ser. Stat. Sci. Appl. Probab., vol. 7, edited by O. E. Bandorff-Nielsen et al., pp. 7384, World Sci., Singapore.
  • Salles, C., and J. D. Creutin (2003), Instrumental uncertainties in Z-R relationships and raindrop fall velocities, J. Hydrol., 42, 279290.
  • Salles, C., J. Poesen, and D. Sempere Torres (2002), Kinetic energy of rain and its functional relationship with intensity, J. Hydrol., 257, 256270.
  • Sempere Torres, D., C. Salles, J. D. Creutin, and G. Delrieu (1992), Quantification of soil detachment by raindrop impact: Performance of classical formulae of kinetic energy in Mediterranean storms, in Erosion and Sediment Transport Monitoring Programs in River Basins, 210, 115124, IASH Publ., Oxfordshire, U. K.
  • Sempere Torres, D., J. M. Porrà, and J. D. Creutin (1994), A general formulation for raindrop size distribution, J. Appl. Meteor., 33(12), 14941502.
  • Sempere Torres, D., J. M. Porrà, and J. D. Creutin (1998), Experimental evidence of a general description for raindrop size distribution properties, J. Geophys. Res., 103, 17851797.
  • Steiner, M., and J. A. Smith (2000), Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra, J. Appl. Meteorol., 39(11), 19231940.
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou (2001), The concept of ‘normalized’ distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing, J. Appl. Meteorol., 40(6), 11181140.
  • Tokay, A., R. Wolff, P. Bashor, and O. Dursun (2003), On the measurement errors of the Joss–Waldvogel disdrometer, paper presented at 31st Conference on Radar Meteorology, Am. Meteorol. Soc., Seattle, Wash.
  • Uijlenhoet, R. (2001), Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology, Hydrol. Earth Syst. Sci., 5(4), 615627.
  • Uijlenhoet, R., and J. N. M. Stricker (1999), A consistent rainfall parameterization based on the exponential raindrop size distribution, J. Hydrol., 218(1999), 101127.
  • Uijlenhoet, R., J. A. Smith, and M. Steiner (2003), The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra, J. Atmos. Sci., 60(10), 12201238.
  • Ulbrich, C. W. (1983), Natural variations in the analytical form of the raindrop size distribution, J. Appl. Meteorol., 22(10), 17641775.
  • Van Dijk, A. I. J. M., A. G. C. A. Meesters, J. Schellekens, and L. A. Bruijnzeel (2005), A two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion modelling, J. Hydrol., 300, 155171.