SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. A. Stegun (1970), Handbook of Mathematical Functions, 1046 pp., Dover Publications Inc., Dover, N. Y.
  • Aifantis, E. C., and J. M. Hill (1980), On the theory of diffusion in media with double diffusivity. Part I: Basic mathematical results, Quart. J. Mech. Appl. Math., 23, 121.
  • Bellin, A., A. J. Valocchi, and A. Rinaldo (1991), Double peak formation in reactive solute transport in one-dimensional heterogeneous porous media, in Transport Processes and the Hydrological Cycle, chap. 9, pp. 321349, Ist. Veneto di Sci., Lett. ed Arti, Veneto, Italy.
  • Coats, K. H., and B. D. Smith (1964), Dead-end pore volume and dispersion in porous media, Soc. Pet. Eng. J., 4, 7384.
  • Dykhuizen, R. C. (1991), Asymptotic solutions for solute transport in dual-velocity media, Math. Geol., 23(3), 383401.
  • Esfandiari, R. S. (2008), Applied Mathematics for Engineers, 1124 pp., Atlantis, Los Angeles, Calif.
  • Gerke, H. H., and M. Th. van Genuchten (1996), Macroscopic representation of structural geometry for simulating water and solute movement in dual-porosity media, Adv. Water. Resour., 19(6), 343357.
  • Hill, J. M., and E. C. Aifantis (1980), On the theory of diffusion in media with double diffusivity. II. Boundary-value problems, Q. J. Mech. Appl. Math., 33, 2341.
  • Hill, J. M., and A. McNabb (1989), On the problem of uncoupling systems of linear differential equations, J. Austral. Math. Soc. (Series B), 30, 483501.
  • Kreyszig, E. (2006), Advanced Engineering Mathematics, 9th ed., 1280 pp., John Wiley, N. Y.
  • Lapidus, L., and N. R. Amundson (1952), Mathematics of adsorption in beds. VI. The effects of longitudinal diffusion in ion exchange and chromatographic columns, J. Phys. Chem., 56, 984988.
  • Leij, F. J., and A. Sciortino (2012), Solute transport, in Handbook of Soil Science, 2nd ed., edited by M. Sumner, pp. 7.17.33, CRC Press, Boca Raton, Fla.
  • Leij, F. J., and M. Th. van Genuchten (2002), Solute transport, Soil Physics Companion, edited by A. Warrick, 99. 189248, CRC Press, Boca Raton, Fla.
  • Miyamoto, T., T. Annaka, and J. Chikushi (2003), Soil Aggregate structure effects on dielectric permittivity of an Andisol measured by time domain reflectometry, Vadose Zone J., 2, 9097.
  • Polyanin, A. D., and A. V. Manzhirov (1998), Handbook of Integral Equations, 816 pp., CRC Press, Boca Raton, Fla.
  • Rappoldt, C. (1990), The application of diffusion models to an aggregated soil, Soil Sci., 150, 645661.
  • Selim, H. M., and L. Ma (1998), Physical Nonequilibrium in Soils: Modeling and Applications, 320 pp., Ann Arbor Press, Chelsea, Mich.
  • Simunek, J., and M. Th. van Genuchten (2008), Modeling nonequilibrium flow and transport processes using HYDRUS, Vadose Zone J., 7, 782797.
  • Toride, N., F. J. Leij, and M. Th. van Genuchten (1993), A comprehensive set of analytical solutions for nonequilibrium solute transport with first-order decay and zero-order production, Water Resour. Res., 29(7), 21672182.
  • Toride, N., F. J. Leij, and M. Th. van Genuchten (1995), The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, U.S. Salinity Lab Rep. 137, 121 pp., GEBJ Salinity Laboratory - USDA-ARS, Riverside, Calif.
  • Toride, N., M. Inoue, and F. J. Leij (2003), Hydrodynamic dispersion in an unsaturated dune sand, Soil Sci. Soc. Am. J., 67, 703712.
  • van Genuchten, M. Th., and F. Dalton (1986), Models for simulating salt movement in aggregated field soils, Geoderma, 38, 165183.
  • van Genuchten, M. Th., and P. J. Wierenga (1976), Mass transfer studies in sorbing porous media: I. Analytical solutions, Soil Sci. Soc. Am. J., 40, 473480.
  • van Genuchten, M. T., and W. J. Alves (1982), Analytical solutions of the one dimensional convective-dispersive solute transport equation, Tech. Bull. 1661, 151 pp., U. S. Dep. of Agric., Washington, D. C.
  • Veling, E. J. M. (2002), Analytical solutions for triple-porosity problems, in Computational methods in water resources, Proceedings of the XIVth Conference on Computational Methods in Water Resources (CMWR XIV), June 23–28, 2002, Delft, Netherlands, (pp. 623–630, vol. I), edited by S. Majid Hassanizadeh et al., pp. 623–630, Elsevier, Amsterdam, Netherlands.
  • Zill, D. G., and M. R. Cullen (2006), Advanced Engineering Mathematics, 3rd ed., 929 pp., Jones and Bartlett, Sudbury, Mass.
  • Zwillinger, D. (1989), Handbook of Differential Equations, 785 pp., Academic, San Diego, Calif.