SEARCH

SEARCH BY CITATION

References

  • Alcamo, J., P.Döll, T.Henrichs, F.Kaspar, B.Lehner, T.Rösch, and S.Siebert (2003), Development and testing of the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., 48(4), 317338.
  • Allen, P. M., J. G.Arnold, and B. W.Byars (1994), Downstream channel geometry for use in planning-level models, Water Resour. Bull., 30(45), 663671.
  • Ames, D. P., E. B.Rafn, R.Van Kirk, and B.Crosby (2009), Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics, Environ. Model. Software, 24, 444448.
  • Beck, M. B. (1987), Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23(8), 13931442.
  • Boyd, M., and B.Kasper (2003), Analytical methods for dynamic open channel heat and mass transfer: Methodology for heat source model, version 7.0, Oregon Dept. of Env. Qual., Portland, Oreg.
  • Caissie, D., N.El-Jabi, and A.St-Hilaire (1998), Stochastic modelling of water temperatures in a small stream using air to water relations, Can. J. Civ. Eng., 25, 250260.
  • Caissie, D., M. G.Satish, and N.El-Jabi (2005), Predicting river water temperatures using the equilibrium temperature concept with application on Miramichi River catchments (New Brunswick, Canada), Hydrol. Processes, 19, 21372159, doi:10.1002/hyp.5684.
  • Chapra, S. C., G. J.Pelletier, and H.Tao (2008), QUAL2K: A modeling framework for simulating river and stream water quality, version 2.11: Documentation and users manual, 109 pp., Civil and Environmental Engineering Dept., Tufts Univ., Medford, Mass.
  • Cole, T. M., and S. A.Wells (2002), CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 3.1, U.S. Army Corps of Engineers Instruction Rep. EL-02-4, 131, pp. + Appendices, U.S. Army Corps of Engineers, Vicksburg, Miss.
  • Donato, M. M. (2002), A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho, U.S. Geol. Surv. Water Resour. Invest. Rep., 02-4195, 39 pp., U.S. Geol. Surv., Boise, Ida.
  • Durand, M., K.Andreadis, D.Alsdorf, D.Lettenmaier, and D.Moller (2008), Bayesian estimation of bathymetric depth and slope from swath altimetry and a hydrodynamic model, Geophys. Res. Lett., 35, L20401, doi:10.1029/2008GL034150.
  • Edinger, J. E., D. W.Duttweiler, and J. C.Geyer (1968), The response of water temperatures to meteorological conditions, Water Resour. Res., 4(5), 11371143.
  • Elsner, M. M., L.Cuo, N.Voisin, J. S.Deems, A. F.Hamlet, J. A.Vano, K. E. B.Mickelson, S. Y.Lee, and D. P.Lettenmaier (2010), Implications of 21st century climate change for the hydrology of Washington State, Clim. Change, 102(1–2), 225260, doi:10.1007/s10584-010-9855-0.
  • Foreman, M. G. G., C. B.James, M. C.Quick, P.Hollemans, and E.Wiebe (1997), Flow and temperature models for the Fraser and Thompson rivers, Atmos. Ocean, 35(1), 109134.
  • Foreman, M. G. G., D. K.Lee, J.Morrison, S.Macdonald, D.Barnes, and I. V.Williams (2001), Simulations and retrospective analyses of Fraser watershed flows and temperatures, Atmos. Ocean, 39(2), 89105.
  • Hamlet, A. F., and D. P.Lettenmaier (2007), Effects of 20th century warming and climate variability on flood risk in the western U.S., Water Resour. Res., 43, W06427, doi:10.1029/2006WR005099.
  • Hamlet, A. F., P. W.Mote, M. P.Clark, and D. P.Lettenmaier (2005), Effects of temperature and precipitation variability on snowpack trends in the western United States, J. Clim., 18, 45454561.
  • Hamlet, A. F., S.Lee, K. E. B.Mickelson, and M. M.Elsner (2009), Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State, in The Washington Climate Change Impacts Assessment: Evaluating Washington's Future in a Changing Climate, edited by J. S.Littell, M. M.Elsner, and L. C. W.Binder, pp. 165190, University of Washington Climate Impacts Group, Seattle, Wash.
  • Hester, E. T., and M. W.Doyle (2011), Human impacts to river temperature and their effects on biological processes: A quantitative synthesis, J. Amer. Water Resour. Assoc., 47(3), 117, doi:10.1111/j.1752-1688.2011.00525.x.
  • Isaak, D. J., C. H.Luce, B. E.Rieman, D. E.Nagel, E. E.Peterson, D. L.Haran, S.Parker, and G. L.Chandler (2010), Effects of climate change and wild fire on stream temperatures and salmonid thermal habitat in a mountain River network, Ecol. Appl., 20(5), 13501371.
  • Independent Scientific Group (ISG) (1996), Return to the river: Restoration of salmonid fishes in the Columbia River ecosystem, 7 pp., Northwest Power Planning Council, Portland, Oreg.
  • Kaushal, S. S., G. E.Likens, N. A.Jaworski, M. L.Pace, A. M.Sides, D.Seekell, K. T.Belt, D. H.Secor, and R. L.Wingate (2010), Rising stream and river temperatures in the United States, Front. Ecol. Environ., 8, 461466, doi:10.1890/090037.
  • Kimball, J. S., S. R.Running, and R. R.Nemani (1997), An improved method for estimating surface humidity from daily minimum temperature, Agric. For. Meteorol., 85, 8798.
  • Kundzewicz, Z. W., L. J.Mata, N. W.Arnell, P.Döll, P.Kabat, B.Jiménez, K. A.Miller, and T.Oki, Z.Sen and I. A.Shiklomanov (2007), Freshwater resources and their management, Climate change 2007: Impacts, adaptation and vulnerability, contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel, in Clim. Change, edited by M. L.Parry et al., pp. 173210, Cambridge Univ. Press, Cambridge, U.K.
  • Lettenmaier, D. P., and J. E.Richey (1979), Use of first-order uncertainty analysis in estimating mass balance errors and planning sampling activities, in Theoretical Systems Ecology: Advances and Case Studies, edited by E.Halfon, pp. 80106, Academic Press, New York.
  • Liang, X., D. P.Lettenmaier, E. F.Wood, and S. J.Burges (1994), A simple hydrologically based model of land surface water energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 1441514424, doi:10.1029/94JD00483.
  • Liang, X., E. F.Wood, and D. P.Lettenmaier (1999), Modeling ground heat flux in land surface parameterization schemes, J. Geophys. Res., 104(D8), 95819600.
  • Lohmann, D., R.Nolte-Holube, and E.Raschke (1996), A large-scale horizontal routing model to be coupled to land surface parameterization schemes, Tellus, 48A, 708721.
  • Luo, L. F., and E. F.Wood (2007), Monitoring and predicting the 2007 U.S. drought, Geophys. Res. Lett., 34, L22702, doi:10.1029/2007GL031673.
  • Mantua, N., I. M.Tohver, and A. F.Hamlet (2010), Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State, Clim. Change, 102, 187223, doi:10.1007/s10584-010-9845-2.
  • Maurer, E. P., A. W.Wood, J. C.Adam, D. P.Lettenmaier, and B.Nijssen (2002), A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States, J. Climate, 15, 32373251.
  • Meyer, J. L., M. J.Sale, P. J.Mulholland, and N. L.Poff (1999), Impacts of climate change on aquatic ecosystem functioning and health, J. Amer. Water Resour. Assoc., 35, 13731386, doi:10.1111/j.1752-1688.1999.tb04222.
  • Mohseni, O., H. G.Stefan, and T. R.Erickson (1998), A nonlinear regression model for weekly stream temperatures, Water Resour. Res., 34(10), 26852693, doi:10.1029/98WR01877.
  • Morrison, J., M. C.Quick, and M. G. G.Foreman (2002), Climate change in the Fraser River watershed: Flow and temperature projections, J. Hydrol., 263, 230244.
  • Nash, J. E., and J. V.Sutcliffe (1970), River flow forecasting through conceptual models, part 1. A discussion of principles, J. Hydrol., 10, 282290.
  • Perry, R. W., J. C.Risley, S. J.Brewer, E. C.Jones, and D. W.Rondorf (2011), Simulating daily water temperatures of the Klamath River under dam removal and climate change scenarios, U.S. Geol. Surv. Open-File Rep. 2011-1243, 57 pp. + Appendices, U.S. Geol. Surv., Portland, Oreg.
  • Pilgrim, J. M., X.Fang, and H. G.Stefan (1998), Stream temperature correlations with air temperatures in Minnesota: Implications for climate warming, J. Amer. Water Resour. Assoc., 34(5), 11091121.
  • Poff, N. L., M. M.Brinson, and J. W.DayJr. (2002), Aquatic ecosystems and global climate change, 56 pp., Pew Center on Global Climate Change, Arlington, Va.
  • Risley, J. C., E. A.Roehl, and P.Conrads (2002), Estimating water temperatures in small streams in western Oregon using neural network models, U.S. Geol. Surv. Water-Resources Investigations Rep. 02-4218, 37 pp. + Appendices, U.S. Geol. Surv., Portland, Oreg.
  • Schweppe, F. C. (1973), Uncertain Dynamic Systems, 576 pp., Prentice Hall, Englewood Cliffs, N. J.
  • Shiklomanov, I. A. (2000), World Water Resources and Their Use, SHI/UNESCO, Paris, France, 37 pp.
  • Sinokrot, B. A., and H. G.Stefan (1993), Stream temperature dynamics––measurements and modeling, Water Resour. Res., 29(7), 22992312.
  • Sinokrot, B. A., and H. G.Stefan (1994), Stream water temperature sensitivity to weather and bed parameters, J. Hydraul. Eng., 120, 722736.
  • Solomon, S. I., J. P.Denouvilliez, E. J.Chart, J. A.Wooley, and C.Cadou (1968), The use of a square grid system for computer estimation of precipitation, temperature and runoff, Water Resour. Res., 4(5), 919929.
  • Sullivan, A. B., and S. A.Rounds (2004), Modeling streamflow and water temperature in the North Santiam and Santiam Rivers, Oregon, 2001–02: U.S. Geological Survey Scientific Investigations Rep. 2004–5001, 35 pp., U.S. Geological Survey, Portland, Oreg.
  • Tennessee Valley Authority (1972), Heat and mass transfer between a water surface and the atmosphere, Laboratory Rep. 14, Report No. 0-6803, Water Resour. Res., Norris, Tenn.
  • Theurer, F. D., K. A.Voos, and W. J.Miller (1984), Instream water temperature model, Instream Flow Information Paper 16, FWS/OBS-84/15, U. S. Fish and Wildlife Service, Western Energy and Land Use Team, Washington, D. C.
  • Thornton, P. E., and S. W.Running (1999), An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation, Agric. For. Meteorol., 93, 211228.
  • vanVliet, M. T. H., F.Ludwig, J. J. G.Zwolsman, G. P.Weedon, and P.Kabat (2010), Global river temperatures and sensitivity to atmospheric warming and changes in river flow, Water Resour. Res., 47, W02544, doi:10.1029/2010WR009198.
  • Vassolo, S., and P.Döll (2005), Global-scale gridded estimates of thermoelectric power and manufacturing water use, Water Resour. Res., 41, W04010, doi:10.1029/2004WR003360.
  • Webb, B. W., and F.Nobilis (1995), Long term water temperature trends in Austrian rivers (in French), Hydrol. Sci. J., 40(1), 8396, doi:10.1080/02626669509491392.
  • Webb, B. W., and F.Nobilis (2007), Long-term changes in river temperature and the influence of climatic and hydrological factors (in French), Hydrol. Sci. J., 52,(1), 7485, doi:10.1623/hysj.52.1.74.
  • Wenger, S. J., C. H.Luce, A. F.Hamlet, D. J.Isaak, and H. M.Neville (2010), Macroscale hydrologic modeling of ecologically relevant flow metrics, Water Resour. Res.46, W09513, doi:10.1029/2009WR008839.
  • World Resources Institute (WRI) (2000), World Resources 2000–2001: People and Ecosystems: The Fraying Web of Life, 389 pp., Elsevier, N. Y.
  • Yearsley, J. R. (2003), Developing a temperature TMDL for the Columbia and Snake rivers: Simulation methods, in EPA-910-R-03-003, 30 pp. + Appendices, U.S. Environmental Protection Agency Region 10, Seattle, Washington.
  • Yearsley, J. R. (2009), A semi-Lagrangian water temperature model for advection-dominated river systems, Water Resour. Res., 45, W12405, doi:10.1029/2008WR007629.
  • Yearsley, J., D.Karna, S.Peene, and B.Watson (2001), Application of a 1-D heat budget model to the Columbia River system, in EPA 910-R-01-004, 65 pp. + Appendices, EPA Region 10, Seattle, Washington.