SEARCH

SEARCH BY CITATION

References

  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover, New York.
  • Boving, T. V., and P. Grathwohl (2001), Tracer diffusion coefficients in sedimentary rocks: Correlation to porosity and hydraulic conductivity, J. Contam. Hydrol., 53(1–2), 85100.
  • Carrayrou, J. (2010), Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY, Comput. Geosci., 14, 393403.
  • Carrayrou, J., R. Mosé, and P. Behra (2004), Operator-splitting procedures for reactive transport and comparison of mass balance errors, J. Contam. Hydrol., 68(3–4), 239268.
  • Carrayrou, J., M. Kern, and P. Knabner (2010a), Reactive transport benchmark of MoMaS, Comput. Geosci., 14, 385392.
  • Carrayrou, J., et al. (2010b), Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems—The MoMaS benchmark case, Comput. Geosci., 14, 483502.
  • Desaulniers, D. E., J. A. Cherry, and P. Fritz (1981), Origin, age and movement of pore water in argillaceous quaternary deposits at four sites in southwestern Ontario, J. Hydrol., 50, 231257.
  • De Simoni, M., J. Carrera, X. Sánchez-Vila, and A. Guadagnini (2005), A procedure for the solution of multicomponent reactive transport problems, Water Resour. Res., 41, W11410, doi:10.1029/2005WR004056.
  • De Simoni, M., X. Sánchez-Vila, J. Carrera, and M. W. Saaltink (2007), A mixing ratios-based formulation for multicomponent reactive transport, Water Resour. Res., 43, W07419, doi:10.1029/2006WR005256.
  • De Windt, L., A. Burnol, P. Montarnal, and J. van derLee (2003), Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration, J. Contam. Hydrol., 61(1–4), 303312.
  • De Windt, L., D. Pellegrini, and J. van derLee (2004), Coupled modeling of cement/claystone interactions and radionuclide migration, J. Contam. Hydrol., 68(3–4), 165182.
  • Donado, L. D., X. Sánchez-Vila, M. Dentz, J. Carrera, and D. Bolster (2009), Multicomponent reactive transport in multicontinuum media, Water Resour. Res., 45, W11402, doi:10.1029/2008WR006823.
  • Hayek, M., G. Kosakowski, and S. Churakov (2011), Exact analytical solutions for a diffusion problem coupled with a precipitation-dissolution reaction and feedback of porosity change, Water Resour. Res., 47, W07545, doi:10.1029/2010WR010321.
  • Hindmarsh, A. C., P. M. Gresho, and D. F. Griffiths (1984), The stability of explicit Euler time-integration for certain finite difference approximations of the multi-dimensional advection–diffusion equation, Int. J. Numer. Methods Fluids, 4(9), 853897.
  • Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward (2005), SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, AMC Trans. Math. Software, 31(3), 363396.
  • Huysmans, M., and A. Dassargues (2007), Equivalent diffusion coefficient and equivalent diffusion accessible porosity of a stratified porous medium, Transp. Porous Media, 66(3), 421438.
  • Jang, Y. S., and Y. I. Kim (2003), Behavior of a municipal landfill from field measurement data during a waste-disposal period, Environ. Geol., 44, 592598.
  • Johnson, R. L., J. A. Cherry, and J. F. Pankow (1989), Diffusive contaminant transport in natural clay: A field example and implications for clay-lined waste disposal sites, Environ. Sci. Technol., 23(3), 340349.
  • Karpov, I. K., K. V. Chudnenko, D. A. Kulik, O. V. Avchenko, and V. A. Bychinski (2001), Minimization of Gibbs free energy in geochemical systems by convex programming, Geochem. Int., 39(11), 11081119.
  • Kosakowski, G., P. Blum, D. Kulik, W. Pfingsten, H. Shao, and A. Singh (2009), Evolution of a generic clay/cement interface: First reactive transport calculations utilizing a Gibbs energy minimization based approach for geochemical calculations, J. Environ. Sci. Sustainable Soc., 23, 4149.
  • Kudryashov, N. A. (2005a), Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fractals, 24, 12171231.
  • Kudryashov, N. A. (2005b), Exact solitary waves of the Fisher equation, Phys. Lett. A, 342, 99106.
  • Kudryashov, N. A., and N. B. Loguinova (2008), Extended simplest equation method for nonlinear differential equations, Appl. Math. Comput., 205, 396402.
  • Lagneau, V., and J. van derLee (2010), Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement, J. Contam. Hydrol., 112, 118129.
  • Landais, P. (2004), Clays in natural and engineered barriers for radioactive waste confinement, Appl. Clay Sci., 26(1–4), 1.
  • Lichtner, P. C. (1996), Continuum formulation of multicomponent-multiphase reactive transport, in Reactive Transport of Porous Media, Rev. Mineral., edited by P. C. Lichtner, C. I. Steefel, and E. H. Oelkers, vol. 34, pp. 181, Mineral. Soc. of Am., Washington, D. C.
  • Lichtner, P. C., E. H. Oelkers, and H. C. Helgeson (1986), Exact and numerical solutions to the moving boundary problem resulting from reversible heterogeneous reactions and aqueous diffusion in a porous medium, J. Geophys. Res., 91, 75317544.
  • Liu, C., and W. P. Ball (1998), Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium, Adv. Water Resour., 21(4), 297313.
  • Marty, N. C. M., C. Tournassat, A. Burnol, E. Giffaut, and E. C. Gaucher (2009), Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions, J. Hydrol., 364(1–2), 5872.
  • Mayer, K. U., E. O. Frind, and D. W. Blowes (2002), Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions, Water Resour. Res., 38(9), 1174, doi:10.1029/2001WR000862.
  • Navarro, J. A. S., C. Lopez, and A. P. Garcia (2000), Characterization of groundwater flow in the Bailin hazardous waste-disposal site (Huesca, Spain), Environ. Geol., 40(1–2), 216222.
  • Noiriel, C., P. Gouze, and D. Bernard (2004), Investigation of porosity and permeability effects from microstructure changes during limestone dissolution, Geophys. Res. Lett., 31, L24603, doi:10.1029/2004GL021572.
  • Noiriel, C., B. Madé, and P. Gouze (2007), Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture, Water Resour. Res., 43, W09406, doi:10.1029/2006WR005379.
  • Palandri, J. L., and Y. K. Kharaka (2004), A compilation of rate Parameters of water-mineral interaction kinetics for application to geochemical modeling, U.S. Geol. Surv. Open File Rep., 2004-1068, 64 pp.
  • Parkhurst, D. L., and C. A. J. Appelo (1999), User's guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geol. Surv. Water Resour. Invest. Rep., 99-4259, 312 pp.
  • Parkhurst, D. L., K. L. Kipp, P. Engesgaard, and S. R. Charlton (2002), PHAST—A program for simulating ground-water flow and multicomponent geochemical reactions, U.S. Geol. Surv., Denver, Col. [Available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phast/index.html.]
  • Piantone, P., C. Nowak, P. Blanc, A. Lassin, and A. Burnol (2006), THEMODDEM: Thermodynamique et Modélisation de la Dégradation Dechets Minéraux, Rep. BRGM/RP- 54547-FR, Bur. de Rech. Géol. et Minières, Orléans, France. [Available at http://thermoddem.brgm.fr/.]
  • Read, D., F. P. Glasser, C. Ayora, M. Guardiola, and A. Sneyers (2001), Mineralogical and microstructural changes accompanying the interaction of boom clay with ordinary Portland cement, Adv. Cem. Res., 13(4), 175183.
  • Sánchez-Vila, X., L. D. Donado, A. Guadagnini, and J. Carrera (2010), A solution for multicomponent reactive transport under equilibrium and kinetic reactions, Water Resour. Res., 46, W07539, doi:10.1029/2009WR008439.
  • Saripalli, K. P., P. D. Meyer, D. H. Bacon, and V. L. Freedman (2001), Changes in hydrologic properties of aquifer media due to chemical reactions: A review, Crit. Rev. Environ. Sci. Technol., 31(4), 311349.
  • Sarott, F. A., M. H. Bradbury, P. Pandolfo, and P. Spieler (1992), Diffusion and adsorption studies on hardened cement paste and the effect of carbonation on diffusion rates, Cem. Concr. Res., 22(2–3), 439444.
  • Shackelford, C. D., and D. E. Daniel (1991), Diffusion in saturated soil. I: Background, J. Geotech. Eng., 117(3), 467484.
  • Shao, H., S. V. Dmytrieva, O. Kolditz, D. A. Kulik, W. Pfingsten, and G. Kosakowski (2009a), Modeling reactive transport in a non-ideal aqueous-solid solution system, Appl. Geochem., 24(7), 12871300.
  • Shao, H., D. A. Kulik, U. Berner, G. Kosakowski, and O. Kolditz (2009b), Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column, Geochem. J., 43(6), e37e42.
  • Shen, L., and Z. Chen (2007), Critical review of the impact of tortuosity on diffusion, Chem. Eng. Sci., 62(14), 37483755.
  • Smellie, J. (1998), Maqarin natural analogue study: Phase III, SKB Tech. Rep. TR-98-04, Swed. Nucl. Fuel and Waste Manage. Co., Stockholm.
  • Soler, J. M. (2003), Reactive transport modeling of the interaction between a high-pH plume and a fractured marl: The case of Wellenberg, Appl. Geochem., 18(10), 15551571.
  • Sousa, E. (2003), The controversial stability analysis, Appl. Math. Comput., 145(2–3), 777794.
  • Steefel, C. I. (2001), CRUNCH: Software for modeling multicomponent, multidimensional reactive transport, user's guide, Rep. UCRL-MA-143182, Lawrence Livermore Nat. Lab., Livermore, Calif.
  • Trotignon, L., V. Devallois, H. Peycelon, C. Tiffreau, and X. Bourbon (2007), Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste, Phys. Chem. Earth., 32(1–7), 259274.
  • van derLee, J. (2005), Reactive transport modelling with HYTEC, user's guide and tutorial, Tech. Rep. LHM/RD/05/30, 114 pp., Cent. d'Inf. Géol., École des Mines, Fontainebleau, France.
  • van derLee, J., and L. De Windt (2001), Present state and future directions of modeling of geochemistry in hydrogeological systems, J. Contam. Hydrol., 47(2–4), 265282.
  • van derLee, J., L. De Windt, V. Lagneau, and P. Goblet (2003), Module-oriented modeling of reactive transport with HYTEC, Comput. Geosci., 29(3), 265275.
  • Vitanov, N. K., and Z. I. Dimitrova (2010), Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Commun. Nonlinear. Sci. Numer. Simul., 15, 28362845.
  • Vitanov, N. K., Z. I. Dimitrova, and H. Kantz (2010), Modified method of simplest equation and its application to nonlinear PDEs, Appl. Math. Comput., 216, 25872595.
  • Wang, W., and O. Kolditz (2007), Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media, Int. J. Numer. Methods Eng., 69(1), 162201.
  • Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess (2004), TOUGHREACT user's guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media, Rep. LBNL-55460, 192 pp., Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess (2006), TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Comput. Geosci., 32(2), 145165.
  • Xu, T., N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng, and K. Pruess (2011), TOUGHREACT version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Comput. Geosci., 37(6), 763774.