SEARCH

SEARCH BY CITATION

References

  • Achal, V., A.Mukherjee, P. C.Basu, and M. S.Reddy (2009a), Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii, J. Ind. Microbiol. Biotechnol., 36(3), 433438.
  • Achal, V., A.Mukherjee, P. C.Basu, and M. S.Reddy (2009b), Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production, J. Ind. Microbiol. Biotechnol., 36(7), 981988.
  • Assteerawatt, A., et al. (2005), MUFTE-UG: Structure, applications and numerical methods, Newsletter, International Groundwater Modeling Centre, Colorado School of Mines, 23(2), 10.
  • Barkouki, T. H., B. C.Martinez, B. M.Mortensen, T. S.Weathers, J. D.DeJong, T. R.Ginn, N. F.Spycher, R. W.Smith, and Y.Fujita (2011), Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments, Transp. Porous Media, 90(1), 2339.
  • Batzle, M., and Z. J.Wang (1992), Seismic properties of pore fluids, Geophysics, 57(11), 13961408.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, 784 pp., Elsevier, N. Y.
  • Bear, J. (1979), Hydraulics of Groundwater, 592 pp., McGraw-Hill, London, U. K.
  • Bell, T. G., M. T.Johnson, T. D.Jickells, and P. S.Liss (2008), Ammonia/ammonium dissociation coefficient in seawater: A significant numerical correction, Env. Chem., 5(3), 183186.
  • Bielinski, A. (2006), Numerical simulation of CO2 sequestration in geological formations, Ph.D. thesis, Universität Stuttgart, Germany.
  • Brotherton, J. E., A.Emery, and V. W.Rodwell (1976), Characterization of sand as a support for immobilized enzymes, Biotechnol. Bioeng., 18(4), 527543.
  • Chou, L., R. M.Garrels, and R.Wollast (1989), Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol., 78(3–4), 269282.
  • Ciurli, S., C.Marzadori, S.Benini, S.Deiana, and C.Gessa (1996), Urease from the soil bacterium Bacillus pasteurii: Immobilization on Ca-polygalacturonate, Soil Biol. Biochem., 28(6), 811817.
  • Class, H., R.Helmig, and P.Bastian (2002), Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique, Adv. Water Resour.25, 533550.
  • Clegg, S. L., and M.Whitfield (1995), A chemical-model of seawater including dissolved ammonia and the stoichiometric dissociation-constant of ammonia in estuarine water and seawater from −2°C to 40°C, Geochim. Cosmochim. Acta, 59(12), 24032421.
  • Clement, T. P., B. S.Hooker, and R. S.Skeen (1996), Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth, Ground Water, 34(5), 934942.
  • Compton, R. G., K. L.Pritchard, and P. R.Unwin (1989), The dissolution of calcite in acid waters-mass-transport versus surface control, Freshwater Biol., 22(2), 285288.
  • Cunningham, A. B., R.Gerlach, L.Spangler, and A. C.Mitchell (2009), Microbially enhanced geologic containment of sequestered supercritical CO2, Energy Procedia, 1(1), 32453252.
  • Cunningham, A. B., R.Gerlach, L.Spangler, A. C.Mitchell, S.Parks, and A.Phillips (2011), Reducing the risk of well bore leakage of CO2 using engineered biomineralization barriers, Energy Procedia, 4, 51785185.
  • Cuthbert, M. O., M. S.Riley, S.Handley-Sidhu, J. C.Renshaw, D. J.Tobler, V. R.Phoenix, and R.Mackay (2012), Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation, Ecol. Eng., 41(0), 3240.
  • DeJong, J. T. (2006), Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng., 132(11), 1381.
  • DeJong, J. T., B. M.Mortensen, B. C.Martinez, and D. C.Nelson (2010), Bio-mediated soil improvement, Ecol. Eng., 36(2), 197210.
  • DeJong, J. T., K.Soga, S. A.Banwart, W. R.Whalley, T. R.Ginn, D. C.Nelson, B. M.Mortensen, B. C.Martinez, and T.Barkouki (2012), Soil engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions, J. R. Soc., Interface, 8(54), 115.
  • De Muynck, W., N.De Belie, and W.Verstraete (2010a), Microbial carbonate precipitation in construction materials: A review, Ecol. Eng., 36(2), 118136.
  • De Muynck, W., K.Verbeken, N.De Belie, and W.Verstraete (2010b), Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone, Ecol. Eng., 36(2), 99111.
  • Duan, Z., and R.Sun (2003), An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 193, 257271.
  • Dupraz, S., B.Menez, P.Gouze, R.Leprovost, P.Benezeth, O. S.Pokrovsky, and F.Guyot (2009a), Experimental approach of CO2 biomineralization in deep saline aquifers, Chem. Geol., 265(1–2), 5462.
  • Dupraz, S., M.Parmentier, B.Menez, and F.Guyot (2009b), Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers, Chem. Geol., 265(1–2), 4453.
  • Ebigbo, A., R.Helmig, A. B.Cunningham, H.Class, and R.Gerlach (2010), Modelling biofilm growth in the presence of carbon dioxide and water flow in the subsurface, Adv. Water Resour., 33(7), 762781.
  • Fauriel, S., and L.Laloui (2011), A bio-hydro-mechanical model for propagation of biogrout in soils, in Geo-Frontiers 2011 Conference, ASCE, Dallas, Texas, edited by J.Han and D. A.Alzamora, pp. 40414048, Am. Soc. of Civil Engin., Reston, Virginia.
  • Fenghour, A., W. A.Wakeham, and V.Vesovic (1998), The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data, 27(1), 3144.
  • Ferris, F., L.Stehmeier, A.Kantzas, and F.Mourits (1996), Bacteriogenic mineral plugging, J. Can. Petrol. Technol., 35, 5661.
  • Ferris, F., V.Phoenix, Y.Fujita, and R.Smith (2003), Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 degrees C in artificial groundwater, Geochim. Cosmochim. Acta, 67(8), 17011710.
  • Fidaleo, M., and R.Lavecchia (2003), Kinetic study of enzymatic urea hydrolysis in the pH range 4–9, Chem. Biochem. Eng. Q., 17(4), 311318.
  • Flukiger, F., and D.Bernard (2009), A new numerical model for pore scale dissolution of calcite due to CO2 saturated water flow in 3D realistic geometry: Principles and first results, Chem. Geol., 265(1–2), 171180.
  • Frippiat, C. C., P. C.Prez, and A. E.Holeyman (2008), Estimation of laboratory-scale dispersivities using an annulus-and-core device, J. Hydrol., 362(1–2), 5768.
  • Fujita, Y., G. D.Redden, J. C.Ingram, M. M.Cortez, F. G.Ferris, and R. W.Smith (2004), Strontium incorporation into calcite generated by bacterial ureolysis, Geochim. Cosmochim. Acta, 68(15), 3261.
  • Fujita, Y., J. L.Taylor, T. L. T.Gresham, M. E.Delwiche, F. S.Colwell, T. L.McLing, L. M.Petzke, and R. W.Smith (2008), Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation, Environ. Sci. Technol., 42(8), 30253032.
  • Fujita, Y., J.Taylor, L.Wendt, D.Reed, and R.Smith (2010), Evaluating the potential of native ureolytic microbes to remediate a (90)sr contaminated environment, Environ. Sci. Technol., 44(19), 76527658.
  • Golfier, F., B. D.Wood, L.Orgogozo, M.Quintard, and M.Buès (2009), Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions, Adv. Water Resour., 32, 463485.
  • Hao, O. J., M. G.Richard, D.Jenkins, and H. W.Blanch (1983), The half-saturation coefficient for dissolved-oxygen––a dynamic method for its determination and its effect on dual species competition, Biotechnol. Bioeng., 25(2), 403416.
  • Harkes, M. P., L. A.vanPaassen, J. L.Booster, V. S.Whiffin, and M. C. M.vanLoosdrecht (2010), Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Ecol. Eng., 36(2), 112117.
  • Helmig, R., H.Class, R.Huber, H.Sheta, R.Ewing, R.Hinkelmann, H.Jakobs, and P.Bastian (1998), Architecture of the modular program system MUFTE-UG for simulating multiphase flow and transport processes in heterogeneous porous media, Math. Geol., 2, 123131.
  • Ivanov, V., and J.Chu (2008), Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Rev. Environ. Sci. Biotechnol., 7(2), 139153.
  • Ji, J. (1994), Fundamental aspects of nickel electrowinning from chloride electrolytes, Ph.D. thesis, University of British Columbia, Canada, 267 pp.
  • Kim, D.-S., and H. S.Fogler (2000), Biomass evolution in porous media and its effects on permeability under starvation conditions, Biotechnol. Bioeng., 69(1), 4756.
  • Kim, D. S., S.Thomas, and H. S.Fogler (2000), Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides, Appl. Environ. Microbiol., 66(3), 976981.
  • Klose, S., and M. A.Tabatabai (1999), Urease activity of microbial biomass in soils, Soil Biol. Biochem., 31(2), 205211.
  • Krajewska, B. (2009), Ureases I. Functional, catalytic and kinetic properties: A review, J. Mol. Catal. B: Enzym., 59(1–3), 921.
  • Li, Y.-H., Y.-Y. M.Chen, and R. A.Burne (2000), Regulation of urease gene expression by Streptococcus salivarius growing in biofilms, Environ. Microbiol., 2(2), 169177.
  • Lloyd, A. B., and M. J.Sheaffe (1973), Urease activity in soils, Plant Soil, 39, 7180.
  • Mateles, R. I. (1971), Calculation of the oxygen required for cell production, Biotechnol. Bioeng., 13(4), 581582.
  • Melo, L. F. (2005), Biofilm physical structure, internal diffusivity and tortuosity, Water Sci. Technol., 52(7), 7784.
  • Michaelides, E. E. (1981), Thermodynamic properties of geothermal fluids, Trans. – Geotherm. Resour. Counc., 5, 361364.
  • Millero, F., F.Huang, T.Graham, and D.Pierrot (2007), The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature, Geochim. Chosmochim. Acta.71(1), 4655.
  • Millero, F. J., P. J.Milne, and V. L.Thurmond (1984), The solubility of calcite, strontianite and witherite in NaCl solutions at 25°C, Geochim. Chosmochim. Acta., 48(5), 11411143.
  • Millington, R., and J. P.Quirk (1961), Permeability of porous solids, Trans. Faraday Soc., 57(8), 12001207.
  • Mitchell, A. C., and F. G.Ferris (2006), The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate, Geomicrobiol. J., 23(3–4), 213226.
  • Mitchell, A. C., A. J.Phillips, M. A.Hamilton, R.Gerlach, W. K.Hollis, J. P.Kaszuba, and A. B.Cunningham (2008), Resilience of planktonic and biofilm cultures to supercritical CO2, J. Supercritical Fluids, 47(2), 318325.
  • Mobley, H. L. T., and R. P.Hausinger (1989), Microbial ureases-significance, regulation, and molecular characterization, Microbiol. Rev., 53(1), 85108.
  • Mortensen, B., M.Haber, J.DeJong, L.Caslake, and D.Nelson (2011), Effects of environmental factors on microbial induced calcium carbonate precipitation, J. Appl. Microbiol., 111(2), 338349.
  • Murphy, E. M., and T. R.Ginn (2000), Modeling microbial processes in porous media, Hydrogeol. J., 8(1), 142158.
  • Norland, S., M.Heldal, and O.Tumyr (1987), On the relation between dry-matter and volume of bacteria, Microbial Ecol., 13(2), 95101.
  • Parks, S. L. (2009), Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions, Master's thesis, Montana State University, Bozeman.
  • Resch, A., R.Rosenstein, C.Nerz, and F.Gotz (2005), Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions, Appl. Environ. Microbiol., 71(5), 26632676.
  • Rittmann, B. E. (1982), The effect of shear stress on biofilm loss rate, Biotechnol. Bioeng., 24(2), 501506.
  • Rockhold, M. L., R. R.Yarwood, and J. S.Selker (2004), Coupled microbial and transport processes in soils, Vadose Zone J., 3(2), 368383.
  • Schultz, L., B.Pitts, A. C.Mitchell, A. B.Cunningham, and R.Gerlach (2011), Imaging biologically induced mineralization in fully hydrated flow systems, Microscopy Today, 19(05), 1215.
  • Seto, M., and M.Alexander (1985), Effect of bacterial density and substrate concentration on yield coefficients, Appl. Environ. Microbiol., 50(5), 11321136.
  • Span, R., and W.Wagner (1996), A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25(6), 15091596.
  • Speitel, G. E., and F. A.DiGiano (1987), Biofilm shearing under dynamic conditions, J. Environ. Eng., 113(3), 464475.
  • Stumm, W., and J. J.Morgan (1996), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., xvi, 1022 pp., Wiley, N. Y.
  • Tanyolac, A., and H.Beyenal (1997), Prediction of average biofilm density and performance of a spherical bioparticle under substrate inhibition, Biotechnol. Bioeng., 56(3), 319329.
  • Taylor, S. W., and P. R.Jaffé (1990), Substrate and biomass transport in a porous medium, Water Resour. Res., 26(9), 21812194.
  • Tobler, D. J., M. O.Cuthbert, R. B.Greswell, M. S.Riley, J. C.Renshaw, S.Handley-Sidhu, and V. R.Phoenix (2011), Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite, Geochim. Cosmochim. Acta, 75(11), 32903301, doi:10.1016/j.gca.2011.03.023.
  • vanDuijn, C. J., and I. S.Pop (2004), Crystal dissolution and precipitation in porous media: Pore scale analysis, J. Für Die Reine Und Angewandte Mathematik, 577, 171211.
  • vanNoorden, T. L. (2009a), Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments, Multiscale Mode. Simul., 7(3), 12201236.
  • vanNoorden, T. L. (2009b), Crystal precipitation and dissolution in a thin strip, Eur. J. Appl. Math., 20, 6991.
  • vanNoorden, T. L., I. S.Pop, A.Ebigbo, and R.Helmig (2010), An upscaled model for biofilm growth in a thin strip, Water Resour. Res., 46, W06505, doi:10.1029/2009WR008217.
  • vanPaassen, L. A., R.Ghose, T. J. M.van derLinden, W. R. L.van derStar, and M. C. M.vanLoosdrecht (2010), Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment, J. Geotech. Geoenviron. Eng., 136(12), 17211728.
  • vanWijngaarden, W., F.Vermolen, G.Meurs, and C.Vuik (2011), Modelling biogrout: A new ground improvement method based on microbial-induced carbonate precipitation, Transp. Porous Media, 87(2), 397420.
  • Whiffin, V. S., L. A.vanPaassen, and M. P.Harkes (2007), Microbial carbonate precipitation as a soil improvement technique, Geomicrobiol. J., 24(5), 417423.
  • Wolf, M., O.Breitkopf, and R.Puk (1989), Solubility of calcite in different electrolytes at temperatures between 10° and 60°C and at CO2 partial pressures of about 1 kPa, Chem. Geol., 76(3–4), 291301.
  • Xu, T. F., Y.Ontoy, P.Molling, N.Spycher, M.Parini, and K.Pruess (2004), Reactive transport modeling of injection well scaling and acidizing at Tiwi field, Philippines, Geothermics, 33(4), 477491.
  • Zhang, T., and I.Klapper (2010), Mathematical model of biofilm induced calcite precipitation, Water Sci. Technol., 61(11), 29572964.
  • Zhang, T. C., and P. L.Bishop (1994), Density, porosity, and pore structure of biofilms, Water Res., 28(11), 22672277.
  • Zhong, S. J., and A.Mucci (1989), Calcite and aragonite precipitation from seawater solutions of various salinites––precipitation rates and overgrowth compositions, Chem. Geol., 78(3–4), 283299.