SEARCH

SEARCH BY CITATION

References

  • Akçelik, V., G.Biros, O.Ghattas, K. R.Long, and B. B.Waanders (2003), A variational finite element method for source inversion for convective-diffusive transport, Finite Elem. Anal. Des., 39(8), 683705.
  • Akçelik, V., G.Biros, A.Draganescu, J.Hill, O.Ghattas, and B. V. B.Waanders (2005), Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants, in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 43, IEEE Comput. Soc. Press, Washington, D.C.
  • Balay, S., W. D.Gropp, L.Curfman McInnes, and B. F.Smith (1997), Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, edited by E.Arge, A. M.Bruaset, and H. P.Langtangen, pp. 163202, Birkhäuser Press, Boston, MA.
  • Balay, S., K.Buschelman, V.Eijkhout, W. D.Gropp, D.Kaushik, M. G.Knepley, L.Curfman McInnes, B. F.Smith, and H.Zhang (2008), PETSc Users Manual, Revision 3.0.0, Tech. Rep. ANL-95/11, Argonne Natl. Lab., Lemont, IL.
  • Barnes, J., and P.Hut (1986), A hierarchical ��(N log N) force-calculation algorithm, Nature, 324, 4.
  • Batu, V. (1998), Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis, John Wiley, New York.
  • Bebendorf, M. (2000), Approximation of boundary element matrices, Numer. Math., 86(4), 565589.
  • Bebendorf, M. (2005), Hierarchical LU decomposition-based preconditioners for BEM, Computing, 74(3), 225247.
  • Bebendorf, M. (2008), Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, vol. 63, Lecture Notes Comput. Sci. Eng., Springer, New York.
  • Bebendorf, M., and S.Rjasanow (2003), Adaptive low-rank approximation of collocation matrices, Computing, 70(1), 124.
  • Benzi, M., G. H.Golub, and J.Liesen (2005), Numerical solution of saddle point problems, Acta Numer., 14, 1137.
  • Börm, S., L.Grasedyck, and W.Hackbusch (2003), Introduction to hierarchical matrices with applications, Eng. Anal. Boundary Elem., 27(5), 405422.
  • Cardiff, M., W.Barrash, P. K.Kitanidis, B.Malama, A.Revil, S.Straface, and E.Rizzo (2009), A potential-based inversion of unconfined steady-state hydraulic tomography, Ground Water, 47(2), 259270.
  • Christakos, G. (1984), On the problem of permissible covariance and variogram models, Water Resour. Res., 20(2), 251265.
  • Dietrich, C. R., and G. N.Newsam (1995), Efficient generation of conditional simulations by chebyshev matrix polynomial approximations to the symmetric square root of the covariance matrix, Math. Geol., 27(2), 207228.
  • Flath, H. P., L. C.Wilcox, V.Akçelik, J.Hill, B.vanBloemen Waanders, and O.Ghattas (2011), Fast algorithms for bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial hessian approximations, SIAM J. Sci. Comput., 33(1), 407432.
  • Franke, R. (1982), Scattered data interpolation: Tests of some method, Math. Comput., 38(157), 181200.
  • Freund, R. W. (1993), A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems, SIAM J. Sci. Comput., 14, 470.
  • Fritz, J., I.Neuweiler, and W.Nowak (2009), Application of FFT-based algorithms for large-scale universal kriging problems, Math. Geosci., 41(5), 509533.
  • Golub, G. H., and C. F.Van Loan (1996), Matrix Computations, vol. 3, Johns Hopkins Univ., Baltimore, Md.
  • Grasedyck, L., and W.Hackbusch (2003), Construction and arithmetics of h-matrices, Computing, 70, 2003.
  • Greengard, L., and V.Rokhlin (1987), A fast algorithm for particle simulations, J. Comput. Phys., 73(2), 325348.
  • Hager, W. W. (1989), Updating the inverse of a matrix, SIAM Rev., 31(2), 221239.
  • Hernandez, V., J. E.Roman, and V.Vidal (2005), Slepc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software, 31(3), 351362.
  • Kitanidis, P. K. (1995), Quasilinear geostatistical theory for inversing, Water Resour. Res., 31(10), 24112419.
  • Kitanidis, P. K. (2007), Bayesian and Geostatistical Approaches to Inverse Problems, in On Stochastic Inverse Modeling, Geophys. Monogr., vol. 171, ed. by L.Biegler, et al., pp. 1930, AGU, Washington, D. C.
  • Kitanidis, P. K. (2010), Bayesian and Geostatistical Approaches to Inverse Problems, pp. 7185. John Wiley, New York.
  • Li, W., and O. A.Cirpka (2006), Efficient geostatistical inverse methods for structured and unstructured grids, Water Resour. Res., 42, W06402, doi:10.1029/2005WR004668.
  • Mason, J. C., and D. C.Handscomb (2003), Chebyshev Polynomials, CRC Press, Boca Raton, FL.
  • Matheron, G. (1973), The intrinsic random functions and their applications, Adv. Appl. Prob., 5(3), 439468.
  • Michalak, A. M., and P. K.Kitanidis (2003), A method for enforcing parameter nonnegativity in bayesian inverse problems with an application to contaminant source identification, Water Resour. Res., 39(2), 1033, doi:10.1029/2002WR001480.
  • Nowak, W., and O. A.Cirpka (2006), Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data, Water Resour. Res., 42, W08416, doi:10.1029/2005WR004832.
  • Nowak, W., S.Tenkleve, and O. A.Cirpka (2003), Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities, Math. Geol., 35(1), 5366.
  • Paige, C. C., and M. A.Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12(4), 617629.
  • Rjasanow, S., and O.Steinbach (2007), The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York.
  • Rubin, Y., and S. S.Hubbard (2005), Hydrogeophysics, Springer, New York.
  • Saad, Y., and M. H.Schultz (1986), GMRES: A generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7(3), 856869.
  • Stein, M. L. (1999), Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York.
  • Wihler, T. P. (2009), On the hölder continuity of matrix functions for normal matrices, J. Inequalities Pure Appl. Math., 10, 15.
  • Ying, L., G.Biros, and D.Zorin (2004), A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys., 196(2), 591626.
  • Zanini, A., and P. K.Kitanidis (2009), Geostatistical inversing for large-contrast transmissivity fields, Stochastic Environ. Res. Risk Assess., 23(5), 565577.