Entire thermal infrared spectrum observed for first time

Authors

  • Colin Schultz


Abstract

The driving mechanism of the greenhouse effect and the underpinning of modern anthropogenic warming is the absorption, emission, and transmission of infrared radiation by atmospheric gases. The heat-trapping ability of a gas depends on its chemical composition, and each type of gas absorbs infrared radiation of different energies. The amount of infrared radiation that escapes into space depends on the net effect of the myriad gases in the atmosphere, with water vapor being the primary gaseous absorber of infrared radiation. Water vapor absorbs a wide range of infrared radiation, masking the effects of other gases. In fact, in many spectral regions (or infrared radiation energy bands), water vapor is so strongly absorbing that it makes testing the accuracy of infrared radiation absorption parameterizations used in general circulation models difficult.

Ancillary