Imaging of Erebus volcano using body wave seismic interferometry of Strombolian eruption coda



[1] Seismic interferometry is a recently developed theory that allows for the recovery of a medium's impulse response between two points should randomly distributed sources of white noise, or equivalently, a multiply scattered equipartioned wavefield, be present throughout the medium. We exploit the extremely scattering nature of volcanic media and seismic illumination from impulsive Strombolian eruptions to extract single-station body wave Green's tensors at an unusually dense array of stations on Erebus volcano, Antarctica. We optimally rotate these Green's tensors for each notable arrival and back project them to construct a 3-dimensional scattering map of the magma-filled volcano conduit system, also corroborated by an independent active source tomography experiment using the same station distribution. This approach not only favors highly scattering media, contrarily to most conventional methods, but its passive nature (i.e., non-anthropogenic sources) allows for studies of structural temporal variability, and possible extension into real-time monitoring of active volcanoes.