Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model

Authors


Abstract

[1] Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOS-Chem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health.

Ancillary