• Arctic;
  • Cloud;
  • Sea ice;
  • feedback;
  • remote sensing

[1] Arctic sea ice cover has decreased dramatically over the last three decades. Global climate models under-predicted this decline, most likely a result of the misrepresentation of one or more processes that influence sea ice. The cloud feedback is the primary source of uncertainty in model simulations, especially in the polar regions. A better understanding of the interaction between sea ice and clouds, and specifically the impact of decreased sea ice on cloud cover, will provide valuable insight into the Arctic climate system and may ultimately help in improving climate model parameterizations. In this study, an equilibrium feedback assessment is employed to quantify the relationship between changes in sea ice and clouds, using satellite-derived sea ice concentration and cloud cover over the period 2000–2010. Results show that a 1% decrease in sea ice concentration leads to a 0.36–0.47% increase in cloud cover, suggesting that a further decline in sea ice cover will result in an even cloudier Arctic.