Relating global precipitation to atmospheric fronts

Authors


Abstract

[1] Atmospheric fronts are important for the day-to-day variability of weather in the midlatitudes, particularly during winter when extratropical storm-tracks are at their maximum intensity. Fronts are often associated with heavy rain, and strongly affect the local space-time distribution of rainfall. A recently developed objective front identification method that distinguishes between cold, warm and quasi-stationary fronts, is applied to reanalysis data and combined with a daily global gridded data set to investigate how precipitation around the globe is associated with atmospheric fronts. A large proportion (up to 90%) of rainfall in the major storm-track regions is associated with fronts, particularly cold and warm fronts. Precipitation over the oceanic storm-tracks is mostly associated with cold fronts, while over the Northern Hemisphere continents precipitation is mainly associated with warm fronts. There are seasonal and regional variations in the proportion of precipitation associated with fronts.

Ancillary