SEARCH

SEARCH BY CITATION

Keywords:

  • climate extreme;
  • climate variability;
  • heatwave;
  • land-atmosphere interactions;
  • soil moisture

[1] Summer temperature variability has been projected to increase in Central Europe in response to anthropogenic greenhouse gas forcing. Based on an unprecedented set of global and regional climate models from the ENSEMBLES project, we assess the robustness of these projections on interannual to daily time scales. In comparison to previous analyses using PRUDENCE simulations, we find a more diverse climate change signal for interannual summer temperature variability and a clear dependence upon present-day model performance. Models that realistically represent present-day variability, tend to consistently project increasing interannual variability at the end of the 21st century. We demonstrate that the partitioning of latent and sensible heat fluxes controlled by soil moisture is crucial to understand the projected changes across the multi-model experiment. The projected increase in daily summer temperature variability is more robust and consistently simulated by all models. Likewise, all models consistently project reduced daily temperature variability in winter. Thus, it is a robust signal across the entire ensemble that in summer and south-central Europe hot extremes warm stronger than the mean, and in winter and northern Europe cold extremes warm stronger than mean temperatures.