• Albrecht, B. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 12271230.
  • Anderberg, M. (1973), Cluster Analysis for Applications, 359 pp., Elsevier, New York.
  • Andreae, M. (2009), Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543556.
  • Bennartz, R. (2007), Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, doi:10.1029/2007JD007547.
  • Bony, S., J.-L. Dufresne, T. H. Le, J.-J. Morcrette, and C. Senior (2004), On dynamic and thermodynamic components of cloud changes, Clim. Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart (2000), Radiative properties of boundary layer clouds: Droplet effective radius verses number concentration, J. Atmos. Sci., 57, 803821.
  • Feingold, G., W. L. Eberhard, D. E. Veron, and M. Previdi (2003), First measurements of the Twomey indirect effect using ground-based remote sensors, Geophys. Res. Lett., 30(6), 1287, doi:10.1029/2002GL016633.
  • Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., chap. 2, pp. 129234, Cambridge Univ. Press, Cambridge, U. K.
  • Grandey, B., and P. Stier (2010), A critical look at spatial scale choices in satellite-based aerosol indirect effect studies, Atmos. Chem. Phys., 10, 11,45911,470, doi:10.5194/acp-10-11459-2010.
  • Gunn, R., and B. Phillips (1957), An experimental investigation of the effect of air pollution on the initiation of rain., J. Atmos. Sci., 14, 272280.
  • Huber, M., and R. Knutti (2011), Anthropogenic and natural warming inferred from changes in the earth's energy balance, Nat. Geosci., 5, 3136, doi:10.1038/ngeo1327.
  • Jones, T. A., S. A. Christopher, and J. Quaas (2009), A six year satellite-based assessment of the regional variations in aerosol indirect effects, Atmos. Chem. Phys., 9, 40914114, doi:10.5194/acp-9-4091-2009.
  • Kaufman, Y., I. Koren, L. Remer, D. Rosenfeld, and Y. Rudich (2005), The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, Proc. Natl. Acad. Sci. U. S. A., 102, 11,20711,212, doi:10.1073/pnas.0505191102.
  • Kim, B.-G., S. Klein, and J. Norris (2005), Continental liquid water cloud variability and its parameterization using Atmospheric Radiation Measurement data, J. Geophys. Res., 110, D15S08, doi:10.1029/2004JD005122.
  • Koren, I., Y. Kaufman, D. Rosenfeld, L. Remer, and Y. Rudich (2005), Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.
  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey (2003), The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.
  • Quaas, J., O. Boucher, and U. Lohmann (2006), Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data, Atmos. Chem. Phys., 6, 947955, doi:10.5194/acp-6-947-2006.
  • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne (2008), Satellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.
  • Quaas, J., et al. (2009), Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9, 86978717, doi:10.5194/acp-9-8697-2009.
  • Quaas, J., B. Stevens, P. Stier, and U. Lohmann (2010), Interpreting the cloud cover—Aerosol optical depth relationship found in satellite data using a general circulation model, Atmos. Chem. Phys., 10, 61296135, doi:10.5194/acp-10-6129-2010.
  • Remer, L., et al. (2005), The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947973, doi:10.1175/JAS3385.1.
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob (2005), Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures, Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.
  • Stier, P., J. Seinfeld, S. Kinne, and O. Boucher (2007), Aerosol absorption and radiative forcing, Atmos. Chem. Phys., 7, 52375261, doi:10.5194/acp-7-5237-2007.
  • Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds., J. Atmos. Sci., 34, 11491152.
  • Williams, K., and M. Webb (2009), A quantitative performance assessment of cloud regimes in climate models, Clim. Dyn., 33, 141157, doi:10.1007/s00382-008-0443-1.
  • Yuan, T., Z. Li, R. Zhang, and J. Fan (2008), Increase of cloud droplet size with aerosol optical depth: An observation and modeling study, J. Geophys. Res., 113, D04201, doi:10.1029/2007JD008632.
  • Zuidema, P., E. Westwater, C. Fairall, and D. Hazen (2005), Ship-based liquid water path estimates in marine stratocumulus, J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.