Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing



[1] The majority of previous studies dealing with effect of coarse mode aerosols (supermicron) on the radiation budget have focused primarily on regions where total aerosol loadings are substantial. We reexamine this effect for a relatively clean area using a unique 1-month dataset collected during the recent Carbonaceous Aerosol and Radiative Effects Study (CARES, June 2010) in the central California region near Sacramento. Here we define “clean” as aerosol optical depths less than 0.1 at 0.5μm. We demonstrate that coarse mode particles contributed substantially (more than 50%) and frequently (up to 85% of time) to the total aerosol volume during this study. In contrast to conventional expectations that the radiative impact of coarse mode aerosols should be small for clean regions, we find that neglecting large particles may lead to significant overestimation, up to 45%, of direct aerosol radiative forcing despite very small aerosol optical depths. Our findings highlight the potential for substantial impacts of coarse mode aerosols on radiative properties over clean areas and the need for more explicit inclusion of coarse mode aerosols in climate-related observational studies.