• Adegoke, J. O., and A. M. Carleton (2002), Relations between soil moisture and satellite vegetation indices in the U.S. Corn Belt, J. Hydrometeorol., 3(4), 395405, doi:10.1175/1525-7541(2002)003<0395:RBSMAS>2.0.CO;2.
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration—Guidelines for computing crop water requirements, Irrig. Drain. Pap. 56, pp. 2765, Food and Agric. Organ. of the U. N., Rome.
  • Becker-Reshef, I., et al. (2010), Monitoring global croplands with coarse resolution Earth observations: The Global Agriculture Monitoring (GLAM) project, Remote Sens., 2(6), 15891609, doi:10.3390/rs2061589.
  • Bindlish, R., T. J. Jackson, E. Wood, H. Gao, P. Starks, and D. Bosch (2003), Soil moisture estimates from TRMM microwave imager observations over the southern United States, Remote Sens. Environ., 85(4), 507515, doi:10.1016/S0034-4257(03)00052-X.
  • Bolten, J. D., W. T. Crow, X. Zhan, C. Reynolds, and T. J. Jackson (2009), Assimilation of a satellite-based soil moisture product in a two-layer water balance model for a global crop production decision support system, in Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, pp. 449463, Springer, Berlin, doi:10.1007/978-3-540-71056-1_23.
  • Bolten, J. D., W. T. Crow, T. J. Jackson, X. Zhan, and C. A. Reynolds (2010), Evaluating the utility of remotely-sensed soil moisture retrievals for operational agricultural drought monitoring, IEEE J. Sel. Topics Appl. Earth Obs., 3(1), 5766, doi:10.1109/JSTARS.2009.2037163.
  • Crow, W. T., S. V. Kumar, and J. D. Bolten (2012), On the utility of land surface models for agricultural drought monitoring, Hydrol. Earth Syst. Sci., in press.
  • deJeu, R. (2003) Retrieval of land surface parameters using passive microwave remote sensing, PhD dissertation, 120 pp., Vrije Univ. Amsterdam, Amsterdam.
  • Entekhabi, D., et al. (2010), The Soil Moisture Active and Passive (SMAP) mission, IEEE Proc., 98(5), 704716, doi:10.1109/JPROC.2010.2043918.
  • Fieller, E. C., H. O. Hartley, and E. S. Pearson (1957), Tests for rank correlation coefficients, Biometrika, 44(3–4), 470481, doi:10.2307/2332878.
  • Gebremichael, M., W. Krafewski, M. Morrissey, D. Langerud, G. Huffman, and R. Adler (2003), Error uncertainty analysis of GPCP monthly rainfall products: A data-based simulation study, J. Appl. Meteorol., 42(12), 18371848.
  • Ji, J., and A. J. Peters (2003), Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices, Remote Sens. Environ., 87(1), 8598, doi:10.1016/S0034-4257(03)00174-3.
  • Kerr, Y. H., and D. Levine (2008), Forward to the special issue on the Soil Moisture and Ocean Salinity (SMOS) mission, IEEE Trans. Geosci. Remote Sens., 46(3), 583585, doi:10.1109/TGRS.2008.917807.
  • Kumar, S., R. H. Reichle, K. W. Harrison, C. D. Peters-Lidard, S. Yatheendradas, and J. A. Santanello (2012), A comparison of methods for a priori bias correction in soil moisture data assimilation, Water Resour. Res., 48, W03515, doi:10.1029/2010WR010261.
  • Mo, K. C., L. N. Long, Y. Xia, S. K. Yang, J. E. Schemm, and M. B. Ek (2010), Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS, J. Hydrometeorol., 12(2), 185210.
  • Musyim, Z. (2011), Temporal relationships between remotely-sensed soil moisture and NDVI over Africa: Potential for drought early warning, MS thesis, Dep. of Geo-Inf. Sci. and Technol., Univ. of Twenty, Enschede, Netherlands.
  • NASA Land Processes Distributed Active Archive Center (2010), MODIS MCD12C1 (collection 5), Earth Resour. Obs. and Sci. Cent., U.S. Geol. Surv., Sioux Falls, S. D.
  • NASA Land Processes Distributed Active Archive Center (2011), MODIS MYD13C2 (collection 5), Earth Resour. Obs. and Sci. Cent., U.S. Geol. Surv., Sioux Falls, S. D.
  • Njoku, E. G., and S. K. Chan (2006), Vegetation and surface roughness effects on AMSR-E land observations, Remote Sens. Environ., 100(2), 190199, doi:10.1016/j.rse.2005.10.017.
  • Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and S. V. Nghiem (2003), Soil moisture retrieval from AMSR-E, IEEE Trans. Geosci. Remote Sens., 41(2), 215229, doi:10.1109/TGRS.2002.808243.
  • Owe, M., R. De Jeu, and T. Holmes (2008), Multisensor historical climatology of satellite-derived global land surface moisture, J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.
  • Palmer, W. C. (1965), Meteorological drought, Res. Pap. 45, U.S. Weather Serv., Washington, D. C.
  • Parinussa, R., A. G. C. A. Meesters, Y. Liu, W. Dorigo, W. Wagner, and R. A. M. De Jeu (2011), An analytical solution to estimate the error structure of a global soil moisture dataset, IEEE Trans. Geosci. Remote Sens., 8, 779783, doi:10.1109/LGRS.2011.2114872.
  • Peled, E., E. Dutra, P. Viterbo, and A. Angert (2010), Technical note: Comparing and ranking soil drought indices performance over Europe, through remote sensing of vegetation, Hydrol. Earth Syst. Sci., 14, 271277, doi:10.5194/hess-14-271-2010.