Quantifying the seasonal “breathing” of the Antarctic ice sheet

Authors


Abstract

[1] One way to estimate the mass balance of an ice sheet is to convert satellite observed surface elevation changes into mass changes. In order to do so, elevation and mass changes due to firn processes must be taken into account. Here, we use a firn densification model to simulate seasonal variations in depth and mass of the Antarctic firn layer, and assess their influence on surface elevation. Forced by the seasonal cycle in temperature and accumulation, a clear seasonal cycle in average firn depth of the Antarctic ice sheet (AIS) is found with an amplitude of 0.026 m, representing a volume oscillation of 340 km3. The phase of this oscillation is rather constant across the AIS: the ice sheet volume increases in austral autumn, winter and spring and quickly decreases in austral summer. Seasonal accumulation differences are the major driver of this annual ‘breathing’, with temperature fluctuations playing a secondary role. The modeled seasonal elevation signal explains ∼31% of the seasonal elevation signal derived from ENVISAT radar altimetry, with both signals having similar phase.

Ancillary