SEARCH

SEARCH BY CITATION

References

  • Bauer, J. E., P. M. Williams, and E. R. M. Druffel (1992), 14C activity of dissolved organic carbon fractions in the N. Central Pacific and Sargasso Sea, Nature, 357, 667670.
  • Benner, R., and S. Opsahl (2001), Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi River Plume, Org Geochem, 32, 597607.
  • Bianchi, T. S. (2011), The role of terrestrially derived organic carbon in the coastal ocean; A changing paradigm and the priming effect, Proc. Nat. Acad. Sci., 108(49), 19,47319,481.
  • Bianchi, T. S., T. Filley, K. Dria, and P. G. Hatcher (2004), Temporal variability in sources of dissolved organic carbon in the lower Mississippi River, Geochim. Cosmochim. Acta, 68, 959967.
  • Borges, A.V., B. Delille, and M. Frankignoulle (2005), Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32, L14601, doi:10.1029/2005GL023053.
  • Butman, D., and P. A. Raymond (2011), Significant efflux of carbon dioxide from streams and rivers in the United States, Nat. Geosci., doi:10.1038/ngeo1294.
  • Cai, W. J. (2003), Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume, Geophys. Res. Lett., 30(2), 10321035.
  • Cai, W. J., M. Dai, and Y. Wang (2006), Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis, Geophys. Res. Lett., 33, L12603, doi:10.1029/2006GL026219.
  • Cai, W. J., and S. Lohrenz (2010), Carbon, nitrogen, and phosphorus fluxes from the Mississippi River and the transformation and fate of biological elements in the river plume and the adjacent margin, in Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, edited by K. K. Liu et al., pp 406421, Springer-Verlag, New York.
  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R.G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg, and J. Melack (2007), Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget, Ecosystems 10, 171184, doi:10.1007/s10021-006-9013.
  • DeBruyn, J. M., L. T. Nixon, M. N. Fawaz, A. M. Johnson, and M. A. Radosevich (2011), Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil, Appl. Environ. Microbiol., 77, 62956300.
  • Dickson, A. G., C. L. Sabine, and J. R. Christian (2007), Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, 191 pp.
  • Goñi, M. A., and J. I. Hedges (1992), Lignin dimers: Structures, distribution, and potential geochemical application, Geochim. Cosmochim. Acta, 56, 40254043.
  • Gran, G. (1992), Determination of the equivalence point in potentiometric titrations, Part II Analyst, 77, 661.
  • Guenet, B., M. Danger, L. Abbadie, and G. R. Lacroix (2010), Priming effect: bridging the gap between terrestrial and aquatic ecology, Ecology 91(10), 28502861.
  • Guo, L., C. H. Coleman, and P. H. Santschi (1994), The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico, Mar Chem, 45, 105119.
  • Hedges, J. I., and J. R. Ertel (1982), Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products, Anal Chem, 54, 174178.
  • Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond, and E. Parlanti (2009), Properties of fluorescent dissolved organic matter in the Gironde Estuary, Org. Geochem., 40, 706719.
  • Lohrenz, S. E., and W. J. Cai (2006), Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin, Geophys. Res. Lett., 33, L01601, doi:10.1029/2005GL023942.
  • Louchouarn, P., S. Opsahl, and R. Benner (2000), Isolation and quantification of dissolved lignin from natural waters using solid-phase extraction (SPE) and GC/MS SIM, Anal. Chem., 72, 27802787.
  • Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 121.
  • Mills, H. J., B. K. Reese, and C. St. Peter (2012), Characterization of microbial population shifts during sample storage, Front. in Extrem. Microbiol. Deep Subsurf. Microbiol., 3, 49. doi:10.3389/fmicb.2012.00049.
  • Narihiro, T., T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura, and Y. Sekiguchi (2012), Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method, Water Res., 46(7), 2167-75.
  • Quigg Q., J. B. Sylvan, A. B. Gustafson, T. R. Fisher, R. Ll Oliver, S. Tozzi, and J. W. Ammerman (2011), Going West: Nutrient Limitation of Primary Production in the Northern Gulf of Mexico and the Importance of the Atchafalaya River, Aquat. Geochem., 17(4-5), 519544.
  • Raymond, P. A., N. F. Caraco, and J. J. Cole (1997), Carbon dioxide concentration and atmospheric flux in the Hudson River, Estuaries, 20, 381390.
  • Raymond, P. A., and J. E. Saiers (2010), Event controlled DOC export from forested watersheds. Biogeochemistry, doi:10.1007/s10533-010-9416-7.
  • Pierrot, D., C. Neill, K. Sullivan, R. Castle, R. Wanninkhof, H. Lüger, T. Johannessen, A. Olsen, R. A. Feely, and C. E Cosca (2009), Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines, Deep-Sea Res. Pt. II, 56, 512522.
  • Reese, B. K., H. J. Mills, S. E. Dowd, and J. W. Morse (2013), Benthic biogeochemistry of microbial iron and sulfate reduction in the Gulf of Mexico hypoxic zone, Geomicrobiol., 30, 160172.
  • Runkel, R. L., C. G. Crawford, and T. A. Cohn (2004), Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers. U.S. Geological Survey Techniques and Methods Book 4, Chapter A5, 69 p. Reston, Virginia: U.S. Geological Survey, U.S Department of the Interior. Available at: pubs.usgs.gov/tm/2004/tm4A5.
  • Shank, G. C., and A. Evans (2011), Distribution and photoreactivity of chromophoric dissolved organic matter in northern Gulf of Mexico shelf waters, Cont. Shelf Res., doi:10.1016/j.csr.2011.04.009.
  • Spencer, R. G. M., P. J. Hernes, A. K. Aufdenkampe, A. Baker, P. Gulliver, A. Stubbins, G. R. Aiken, R. Y. Dyda, K. D. Butler, V. L. Mwamba, A. M. Mangangu, J. N. Wabakanghanzi, and J. Six (2012), An initial investigation into the organic matter biogeochemistry of the Congo River, Geochim. Cosmochim. Acta, 84, 614627.
  • Stubbins, A., R. G. M. Spencer, H. Chen, P. G. Hatcher, K. Mopper, P. J. Hernes, V. L. Mwamba, A. M. Mangangu, J. N. Wabakanghanzi, and J. Six (2010), Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry, Limnol. Oceanogr., 55, 14671477.
  • Velicer, G. J., and K. L. Hillesland (2008), Why cooperate? The ecology and evolution of the myxobacteria. In Myxobacteria: Multicellularity and Differentiation, editor. D. E. Whitworth, pp. 1740. Washington, DC: Am. Soc. Microbiol. Press.
  • Wysocki, L. A., T. S. Bianchi, R. Powell, and N. Reuss (2006), Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume, Estuar. Coastal Shelf Sci., 69, 4763.